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Abstract

As Large Language Models (LLMs) integrate into diverse workflows, they are
increasingly being considered "collaborators" with humans. If such AI collaborators
are to be reliable, their behavior over multiturn interactions must be predictable,
validated and verified before deployment. Common alignment techniques are
typically developed under simplified single-user settings and do not account
for the dynamics of long-horizon multiparty interactions. This paper examines
how different alignment methods affect LLM agents’ effectiveness as partners in
multiturn, multiparty collaborations. We study this question through the lens of
friction agents that intervene in group dialogues to encourage the collaborative
group to slow down and reflect upon their reasoning for deliberative decision-
making. Using a roleplay methodology, we evaluate interventions from differently-
trained friction agents in collaborative task conversations. We propose a novel
counterfactual evaluation framework that quantifies how friction interventions
change the trajectory of group collaboration and belief alignment. Our results
show that a friction-aware approach significantly outperforms common alignment
baselines in helping both convergence to a common ground, or agreed-upon task-
relevant propositions, and correctness of task outcomes.

1 Introduction
Large Language Models (LLMs) are increasingly being integrated into "agentic" pipelines that
interact with humans users to help them achieve goals and solve problems. Such agents need to
remain optimal over long-horizon user interactions, but optimality assumptions are challenged
in multiparty collaborations, where collaborative groups frequently succumb to belief misalignment
and breakdown of common ground (Stalnaker, 2002; Asher & Gillies, 2003). Therefore, before agents
are deployed in such settings, it is important to be able to predict how different LLM alignment
methods would perform given their underlying assumptions, so that we know to what extent they
can serve as reliable partners. Our work specifically examines this problem through the lens of
friction agents. Friction agents do not act as tutors and give answers, but aim to mitigate misaligned
beliefs and breakdowns in shared understanding by inserting friction, or prompting the dialogue
participants to slow down, reflect and deliberate on their existing assumptions (İnan et al., 2025;
Pustejovsky & Krishnaswamy, 2025), which plays a crucial role in successful multiparty human
collaborations (Roschelle & Teasley, 1995; Mercier & Sperber, 2011; Graesser et al., 2018). In this
paper, we use a roleplay methodology to examine LLM behavior in multiparty collaborative settings,
and present three novel contributions:
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F: Does checking the 4 really reveal
something crucial about vowels?
C: If we check 4 and it doesn't have a
vowel, what have we learned? I'd verify
A and 7.
F: Why do we think flipping 7 is
relevant?
C: If 7 is paired with a vowel, it would
contradict the rule! I'll keep A and 7.
F: Okay, are we sure that checking 4
helps us understand the rule?
C: The rule says that vowels have even
numbers, not the inverse. Kiwi: Let's do
it—A and 7  it is! Thanks to the
Friction Agent for nudging us in the
right direction!
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Figure 1: Collaborate [L]: High-level overview of our agent roleplay and evaluation framework. An "Oracle"
friction agent generates conversations in which COLLABORATOR AGENTs (πC) collaborate to complete tasks.
These dialogue trajectories are used to align FRICTION AGENTs (πF) for deployment. Role-prompts in bottom
left. Deliberate [C]: Sample collaborative roleplay from DeliData Wason Card task (Karadzhov et al., 2023) with
successful task completion, and frictive state description at top. Evaluate [R]: Common ground convergence
and task outcomes with and without friction, and reward modeling of intervention quality.

• A novel analysis of small group collaborative task dynamics based on a modified-action
MDP (MAMDP; Langlois & Everitt (2021)). We demonstrate that standard "offline" LLM
alignment methods do not retain their optimality guarantees in an MAMDP.

• A novel counterfactual roleplay evaluation technique to assess how well different alignment
techniques retain their abilities to support both common ground construction (i.e., collabo-
rative processes) and task solution correctness (i.e., collaborative outcomes), over multiturn
dialogues. See Fig. 1.

• Key insights into AI assistance in collaborative dialogues, derived from experiments on
two collaborative tasks in multiple conditions: inserting friction actually speeds up common
ground convergence and improves task outcomes.

2 Related Work
Training agents for collaborative tasks is challenging due to the scarcity of explicit data. Most
previous work in RLHF (Christiano et al., 2017; Ziegler et al., 2020; Casper et al., 2023; Christiano
et al., 2023) including offline variants (Yuan et al., 2023; Azar et al., 2024; Fisch et al., 2024; Rafailov
et al., 2024b) focus on summarization, single-turn dialogue generation, or translation (Xu et al.,
2024), while recent work (Chen et al., 2024; Choi et al., 2024; Zhang et al., 2024) examines LLM
search-space optimization with additional conditioning on chain-of-thought (CoT; Wei et al. (2023))
to cover a wider range of tasks like question-answering, fact-verification, persona-based preference
learning (Tseng et al., 2024) and, importantly to this work, roleplay (Li et al., 2023a), in diverse
domains (Hao et al., 2024; Kim et al., 2024). Our work extends this effort to study preference opti-
mization in multiparty collaborative tasks, with additional focus on process-related desiderata like
common ground convergence and AI collaboration "support" to prompt "slow-thinking" (Kahne-
man, 2011) and reflective interventions in collaborative settings, in contrast to information-seeking
behavior (Abdulhai et al., 2023; Li et al., 2023b; Andukuri et al., 2024; Song et al., 2024).

In real data (Karadzhov et al., 2023; Khebour et al., 2024a), frictional interventions are rare but
critical (Sutton & Rao, 2024). Human collaborators interrupt only strategically (Peters et al., 2017;
Puranik et al., 2020), unlike information-seeking agents (Abdulhai et al., 2023) which can be trained
via behavior cloning from expert rollouts (Andukuri et al., 2024). Most importantly, without an
accessible collaborative problem solving task environment to supply an external reward signal,
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applying single-step (Schulman et al., 2017b; Shao et al., 2024) or multi-step RL (Zhou et al.,
2024) becomes challenging, making preference alignment with static but contrastive data more
appealing (Snell et al., 2023), especially with principled approaches like contrastive and efficient
"offline" preference optimization (Azar et al., 2024; Hong et al., 2024; Meng et al., 2024; Pal et al.,
2024; Rafailov et al., 2024b; Nath et al., 2025b). Data generation efforts (Goldberg, 2013; Li et al.,
2023a; Pan & Zeng, 2023; Mao et al., 2024; Shani et al., 2024) aided with RLAIF (Lee et al., 2024) as
well as evaluation frameworks (Bai et al., 2022; Zheng et al., 2023; Bai et al., 2024; Lambert et al.,
2024) use high-capacity LLMs as both "judges" and data-generators for training LLMs to reflect
human preferences. While LLM-judge frameworks face challenges from evaluation bias, spurious
correlations (Amodei et al., 2016; Casper et al., 2023; Lambert et al., 2024; Singhal et al., 2024), and
reward hacking (Everitt et al., 2021b), recent work (Ward et al., 2023; Wang et al., 2025) explores
more causal approaches (Pearl, 2009), such as counterfactual invariance for robust training. We
extend this line to alignment evaluation for collaborative settings, where multi-agents (Leibo et al.,
2017) perform back-and-forth interaction over longer sequences (Zhou et al., 2024).

3 Background and Task Formulation
Let us first define key terms we rely on. (1) Frictive state: Entailed by Clark (1996)’s common ground,
or the set of beliefs shared by interlocutors, a frictive state (or frictive belief state) arises during a
collaborative task when different interlocutors have contradictory beliefs about a task-relevant
proposition (i.e., one believes p and another sees evidence against p), which may prevent progress
on the task unless resolved. (2) Friction intervention: Friction can also be used to resolve the frictive
state through a friction intervention that prompts the participants to slow down and reevaluate
their beliefs or assumptions in light of available evidence (Oinas-Kukkonen & Harjumaa, 2009),
rather than uncritically relying on their current presuppositions. Examples in real collaborative
tasks include the probing utterances in Karadzhov et al. (2023) and Nath et al. (2024). In this
paper, a FRICTION AGENT constitutes a language model aligned toward making strategic frictive
interventions in a multiparty dialogue to resolve frictive states between collaborators.

3.1 Collaborative Friction via Modified-Action MDPs
In real-world multiparty collaborations, an agent’s intervention doesn’t directly change the
state—it’s filtered through how other participants interpret, resist, or reshape it (Grice, 1975;
Bolander, 2014; Ward et al., 2023; Obiso et al., 2025). These observations highlight a crucial gap:
standard Bellman-optimal policies assume a direct mapping from action to state change, which
breaks down when actions are mediated by other agents. To address this, we adopt the Modified-
Action MDP (MAMDP) framework, which explicitly models how interventions are transformed
before influencing the collaborative dialogue.

While this issue has been explored theoretically in prior work on MAMDPs (Langlois & Everitt, 2021;
Everitt et al., 2021a), its implications for LLMs acting as collaborative agents remain underexamined.
Unlike classical agents, LLMs operate over high-dimensional language spaces where subtle shifts
in word choice can drastically alter how interventions are received and reinterpreted. We show that
the same suboptimality of Bellman-optimal “conditional” policies also applies to LLMs trained in
such settings—and validate this insight empirically—highlighting the importance of accounting for
action transformation when designing alignment objectives for LLM-based agents.

Formally, an MAMDP consists of a 6-tuple M f = (S ,A, PS, PA, R, γ), or equivalently, the 5-
tuple of a standard MDP with additional parameter PA. The state space (s ∈) S represents the
dialogue historyHt as token sequences terminating at timestep t, the action space (a ∈) A contains
candidate actions (utterances in the dialogue) sampled from an underlying distribution, and the
state transition function PS is deterministic (Rafailov et al., 2024a). Now assume a FRICTION AGENT
πF

θ (an LLM with parameters θ). PA(a|πF, s) represents the probability that πF selects action a in

3



Published as a conference paper at COLM 2025

state s, the reward R(s, a) is an expected utility, and discount factor γ = 1. Additionally assume a
COLLABORATOR AGENT πC (a distribution representing human behavior).

Because language is inherently ambiguous, even a single re-phrasing by one collaborator can
flip the pragmatic force of an intervention. In other words, LLMs’ very medium makes action
transformation the norm, not the exception. Consider the following example.

Example 1 (Action Modification in DeliData Wason Card Task). In the Wason card selection
task (Wason, 1968) as collected in the DeliData dataset (Karadzhov et al., 2023), collaborators must
decide which cards from a set (e.g., {U, S, 8, 9}) to flip to test the rule: All cards with vowels on
one side have an even number on the other. Each player comes up with a solution individually and
the group then deliberates to come to a consensus. The correct solution here is to flip U and 9; this
would establish if U’s reverse is an even number, and the contrapositive (if 9 has a consonant). Two
participants’ initial solution might be to flip only U while the other proposes flipping 8. In this
setting, the dialogue history is the state s, the FRICTION AGENT’s proposed intervention (or action)
is a, and the collaborators’ reinterpretation is the transformation PA. Suppose πF’s intervention
aF

t proposes checking an odd number as the rule does not single out vowels and even numbers
only. In the MAMDP setting, the collaborator πC responds with an action aC

t that interprets the
semantics of aF

t , either faithfully or with some modification, such as checking U, 9 and 8.

Theoretical Insights The above illustration already shows the core risk: an intervention that is
Bellman-optimal for the unmodified action space can be counter-productive once collaborators
reshape it. Specifically, we can show how current algorithms like Direct Preference Optimization
(DPO; Rafailov et al. (2024b)) and Identity Preference Optimization (IPO; Azar et al. (2024)) satisfy
Bellman optimality conditions and have policy structures that retain the optimal policy formulation,
they are suboptimal for collaborative settings because they disregard modifications made to the
action space by COLLABORATOR AGENT πC, and RL policies do not retain optimality guarantees
when their actions are modified (Langlois & Everitt, 2021).

Theorem 1 (Ψ-Preference Optimization in Collaborative MAMDPs). Let Ψ : [0, 1]→ R be any non-
decreasing function and β > 0 be a temperature parameter. Let PA(a|s, πF) = ∑a′∈A πF(a′|s) ·πC(a|s, a′),
and represent modifications to the probability distribution over the action space by a collaborator policy
πC, and let πF be a friction agent policy trained via Ψ-preference optimization in a collaborative MAMDP
M f = (M, PA) with MDPM and PA following Langlois & Everitt (2021)’s definition. πF satisfies Eq. 1:

πF(a|s) = exp(QF(s, a)/β)

∑a′ exp(QF(s, a′)/β)
(1)

where QF satisfies the Bellman optimality equation for the underlying MDPM. Thus πF is optimal only
when actions are sampled without modification, and the Bellman-optimality of ΨPO-aligned πF disregards
the collaborator πC’s modifications. For MAMDPs with LLMs, this unifies Rafailov et al. (2024a)’s derivation
of DPO in the token MDP with Langlois & Everitt (2021)’s proposition that Bellman-optimal policies do not
consider action modifications, and extends it to ΨPO/IPO. See Appendix A for a detailed proof.

This distinction is critical as preference-aligned agents get deployed in real-world collaborative
settings, such as LLMs as "supportive" agents in learning environments (Ganesh et al., 2023; D’Mello
et al., 2024; Kumaran et al., 2024; Perkoff et al., 2024). Prior to deployment, different alignment
techniques must be validated in a realistic setting to determine which are likely to be the most
reliable given the suboptimality risks, beyond an atomized comparison to optimal policy outputs.
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3.2 Collaborative Task Settings

The two collaborative tasks we investigated are (1) the Wason card selection task (Wason, 1968) as
captured in DeliData (Karadzhov et al., 2023). This is briefly described in Example 1. Each dialogue
contains 2–6 participants who are presented with 4 cards with a number or letter on them. They
must collectively decide which cards to flip to test the rule. The right answer is to flip a card showing
a vowel and a card showing an odd number, which verifies the bidirectionality of the rule. Utterances
are annotated with types of deliberation, allowing us to identify where friction occurrs. (2) The
Weights Task (Khebour et al., 2024a), in which triads deduce the weights of differently-colored
blocks with the aid of a balance scale. The correct weight values are red = 10g, blue = 10g, green =
20g, purple = 30g, and yellow = 50g. In this multimodal task, participants communicate with
language, gestures, and/or actions, and so the data is enriched with friction utterance annotations,
and annotations of gestures, actions, and their meanings.

3.3 How Do We Train A Friction Agent?

Data Generation Naturally-occurring friction in collaborative task datasets is sparse, which limits
the search space of possible outcomes for a model trained only over real data.1 Additionally, fixed
datasets provide no way to test the effect of novel friction interventions on the dialogue trajectory.
We addressed both of these issues using a roleplay simulation approach (Li et al., 2023a; Shani et al.,
2024) to simulate diverse human behavior and likewise LLM behavior in those contexts. Following
Li et al. (2023a), a single expressive policy can be used to roleplay multiple individual humans with
appropriate prompting, and LLM roleplays of human dialogue and reasoning behavior have been
shown to have high correlation with human labels (Wiegreffe et al., 2021; Jiang et al., 2023).

We collected dialogue trajectories in the two tasks described in Sec. 3.2 (hereafter referred to as
DeliData and WTD) as roleplays between an oracle agent O acting as the FRICTION AGENT and
a COLLABORATOR AGENT πC that roleplayed all task participants, consistent with the MAMDP.
During data generation, we used off-the-shelf GPT-4o (OpenAI et al., 2024) as a high-capacity
LLM to simulate both agents. Roleplay began with a set of task-specific guidelines. Every turn
consisted of a back-and-forth interaction between the simulated agents. Fig. 1[L,C] shows a
high-level schematic. The oracle’s role as the FRICTION AGENT was to track the dialogue, identify
frictive states in the dialogue in terms of impasses or breakdowns in common ground, and intervene
with high-quality friction statements that prompt for reflection and deliberation on those items of
confusion. The collaborator then continued the interaction as all task participants.2

Specifically, at each turn t of a dialogue, the oracle identified the current frictive state ϕt. Then, it
generated K candidate friction interventions { f j}K

j=1 conditioned on the dialogue state si and frictive

state ϕt. The COLLABORATOR AGENT πC generated a response cj to each candidate intervention.3

These responses could modify or reinterpret the intervention’s intent or semantic content (see Sec. 3.1),
since this instruction is explicit in the prompt. Using "self-rewarding" (Yuan et al., 2024) the
collaborator simultaneously scored each interaction between 1 and 10, quantifying its effect on
task progress. The highest and lowest rated interventions, fw and fl , were selected using West-of-

1For instance, "probing" interventions, the chief instance of friction in the DeliData dataset, occurs at a rate
of only 3.46 interventions per group, out of 17,110 total utterances (500 groups).

2The number of participants roleplayed by the collaborator varies based on the task: for WTD, the number
is fixed at 3; for DeliData, the number may be between 2–6, with an average of 4.3.

3Note that cj can represent more than one simulated participant’s utterance to allow for multiple speaking
turns. In our experiments, the collaborator was explicitly guided to generate one utterance per turn for each
participant in the simulated group, where each participant had a personality trait sampled from a pre-collected
pool (Wang et al., 2022) to increase the diversity of simulated behaviors.
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N (Pace et al., 2024) sampling. We recorded these as a winner/loser pair ( fw, fl) in the preference
dataset Dpref with the associated dialogue state si and intervention ϕt. The full turn trajectory was
appended to Dtraj where each sample consisted of si, ϕt, and fw. fw and the collaborator’s response
cj were appended to the dialogue state. This process continued for N = 15 turns. See Appendix C
for prompting strategy, and Algorithm 1 for implementation details. The generated DeliData
includes chat dialogue only, while WTD may include actions/gestures as "stage directions."

Training A FRICTION AGENT should not only help task completion, but also iteratively improve
common ground by helping resolve topical disagreements. To achieve this, we adopt the Frictional
Agent Alignment Framework (FAAF; Nath et al. (2025a)) technique. FAAF is an exemplar of frictive
policy alignment through Frictive Preference Pairing as proposed by Pustejovsky & Krishnaswamy
(2025), and is designed to support collaborative problem solving through friction interventions
with a custom training objective that explicitly conditions on the frictive state ϕ, but has only to
date been evaluated in an offline LLM-judge format. FAAF optimizes an empirical loss expressed
in terms of the differences in two log-ratios:

LFAAF = EDpref

[(
1

2β
− (∆R + ∆R′)

)2
]

, (2)

where ∆R denotes log πθ( fw |si ,ϕt)
πref( fw |si ,ϕt)

− log πθ( fl |si ,ϕt)
πref( fl |si ,ϕt)

(the difference in log-ratio between the winning
and losing intervention in a sample, with explicit conditioning on the frictive state) and let ∆R′ =
log πθ( fw |si)

πref( fw |si)
− log πθ( fl |si)

πref( fl |si)
(the implicit reward margin unconditioned on ϕ). Together the two

terms implicitly encode the difference between presence and absence of the frictive state. If,
however, we ignore ∆R′ and focus only on the terms that include explicit frictive state conditioning,
we arrive at an IPO-like general preference loss, parametrized with θ:

Lfriction(πθ) = E(si ,ϕt , fw , fl)∼Dpref


log

πθ( fw | si, ϕt)

πref( fw | si, ϕt)︸ ︷︷ ︸
implicit win score

− log
πθ( fl | si, ϕt)

πref( fl | si, ϕt)︸ ︷︷ ︸
implicit loss score

− 1
2β︸︷︷︸

margin


2 (3)

Letting Ψ : [0, 1]→ R be any non-decreasing function, πref be a reference model, and β ∈ R+ be
a regularization parameter, Eq. 3 is a solution to the inner-max operator of Nath et al. (2025a)’s
two-player min-max objective:

J ∗FAAF = min
πF′

max
πF

E x∼ρ

ϕ∼πF′ (·|x)
F∼πF(·|ϕ,x)

[
Ψ
(
P(F ≻ F′ | ϕ, x)

)
− βDKL(π

F ∥ πref | ϕ, x) + βDKL

(
πF′ (ϕ|x) ∥ πref(ϕ|x)

)]
,

(4)
thus showing that the FAAF loss with only the frictive state-conditioning term ∆R is equivalent to
IPO with frictive state-conditioning. Given this, the following lemma holds:
Lemma 1 (Vanishing Gradient of the Frictive State). InLfriction, the direct contribution of the frictive state
ϕ to the gradient vanishes when the conditional probability is decomposed. LFAAF overcomes this limitation
by incorporating marginal terms that preserve gradient information for frictive states. See Lemma 5 and
Corollary 1 for proofs.

FAAF’s ∆R′ incorporates gradients of πθ(ϕ|x), acting as a "fall-back" that helps push the model
toward the target preference gap 1/2β (cf. SMAUG (Zhao et al., 2023; Pal et al., 2024) which retains
a fixed margin of implicit rewards). Thus, we hypothesize that FAAF alignment improves understanding
of what makes an important frictive state, rather than just learning how to respond to one.
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4 Experiments and Evaluation

Our experimental setup used a roleplay setting similar to that used for data generation (Sec. 3.3),
except that friction interventions were generated by the respective aligned πF instead of the oracle,
to simulate dialogues where the collaborating group received interventions from one of the trained
FRICTION AGENTs. A successful FRICTION AGENT in multiturn, multiparty collaborations will
retain an ability to generate interventions that support construction of common ground as well
as successful task completion, over the complete duration of the task, even if the collaborator
modifies the action space by misinterpreting or ignoring the intent of the interventions. Therefore,
we perform a counterfactual evaluation, which examines if friction interventions benefited the
collaboration by comparing collaborative trajectories with friction interventions to alternative
collaborative trajectories where the intervening agent is not optimized for friction; and a reward
model evaluation, which assessed the reward advantage of interventions generated by each
method over interventions generated by the SFT reference model. To explicitly test robustness to
the suboptimality risks introduced by the MAMDP, we included a "modified action" (MA) setting
where the collaborator agent πC’s system prompt (Fig. 7) would guide it to verbally acknowledge
the friction agent’s intervention but not incorporate its suggestions into the next collaborator action.

Metrics Our metrics were common ground size, solution accuracy, and intervention quality. Common
ground size and solution accuracy were extracted from each dialogue turn using GPT-4o with a
custom detailed prompt (Figs. 6 and 9). This assessed how well agent interventions helped the
group build common ground, and how correct the propositions in the common ground at the end
of the task were, compared to the correct solutions for each task (see Sec. 3.2). For DeliData, we
also calculated a fine-grained score, which allocated 0.25 points each for including target cards
(odd numbers, vowels) and excluding irrelevant ones. In both tasks, we also assessed intervention
quality using a reward modeling approach (Hong et al., 2024). We aggregated the quality and
accuracy metrics with means and standard deviations across all dialogues for each model.

Baselines We evaluated four baselines besides FAAF: (1) Supervised fine-tuning (SFT), where
πF was trained directly on expert demonstrations on Dpref. (2) Contrastive preference alignment
methods DPO (Rafailov et al., 2024b) and IPO (Azar et al., 2024), which refined πF using preference
labels from Dpref. Since training IPO while conditioning on ϕ results in a loss identical to Lfriction

(Eq. 3), we report results using Lfriction as IPO. (3) Reinforcement Learning (RL), where πF was fine-
tuned via Proximal Policy Optimization (PPO; Schulman et al. (2017b)). We used OPT-1.3B (Zhang
et al., 2022) initialized with the SFT-trained πF for the reward model (RM) training for PPO (cf.
(Hong et al., 2024)). (4) A Behavior-cloned expert trained directly on filtered trajectories (cf. Song
et al. (2024) and Andukuri et al. (2024)) from Dtraj with no contrastive preference optimization.

We used Meta-Llama-3-8B-Instruct (AI@Meta, 2024) for all experiments. We conducted an ablation
study on the two-part LFAAF loss by replacing ∆R in Eq. 3 with the ϕ-unconditioned ∆R′; we denote
this result as FAAF∆R′ . For all training-related details and experimental settings see Appendix D.

Counterfactual Evaluation: The "What-If" Question The counterfactual evaluation (Pearl, 2009;
Ward et al., 2023) assessed how the development of common ground would change compared to the
collaborator interacting with an agent untrained in friction interventions, under identical conditions at
each turn. We used GPT-4o as the COLLABORATOR AGENT πC with temperature T=0, top-p=1
for deterministic responses; all πF sampling uses T=0, top-p=0.9. Step 1: we collected factual
trajectories where the trained FRICTION AGENT πF interacted with πC, generating trajectory τF =
{s0, f1, c1, . . . , fT , cT}, where s0 represents a bootstrap dialogue (see Figs. 6 and 8 for the respective
prompts for each dataset).The collaborator responses C = {c1, c2, . . . , cT}, constituted a unique
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set for each baseline model. Step 2: we used an untrained4 instruction-tuned πbase as a "drop-in
replacement" to generate interventions in response to these collaborator outputs ct ∈ C, resulting in
Fbase = { f̃1, f̃2, . . . , f̃T}. Step 3: we ran a new dialogue loop to collect fresh collaborator responses
to the cachedFbase, resulting in the counterfactual trajectory τbase = {s0, f̃1, c̃1, . . . , f̃T , c̃T}, in which
πC received interventions from an agent unaligned for friction. τF and τbase were then compared
to see how common ground evolved with and without trained friction interventions.

Reward Model Test Reward model evaluation computes the win-rate of each method’s interven-
tions vs. the SFT model. We took collaborator responses C from the SFT model’s "factual" trajectory
from Step 1 above, and generate fresh interventions using the relevant πF. We then calculated each
model’s win-rate vs. the SFT model’s interventions with a trained OPT-1.3B reward model.

5 Results and Discussion

Figure 2: Normalized Cumulative Common Ground (NCCG) under "factual" (F) and "counterfactual" (NF)
friction conditions (Fig. 1[R]), from 50 dialogues from WTD (left) and 100 from DeliData (right). "Untrained
Agent" denotes independently running the dialogue loop with πbase in Step 1. Common ground size is
normalized against the theoretical upper size bound on each task’s propositional space (37 for WTD; 16 for
DeliData). The common ground never realistically reaches such sizes because it would then contain mutually
contradictory propositions, hence the upper bound on NCCG of 50% or less. The increase in common ground
with friction is statistically significant across baselines (p < 0.005 overall). DeliData results show 14 turns
because T = 15 is always the final answer submission, which never changes the common ground.

Does friction boost Common Ground? Fig. 2 shows "Normalized Cumulative Common Ground"
under "factual" and "counterfactual" conditions as a function of dialogue turn. With the FAAF
AGENT, groups converge to greater common ground, meaning that they come to agree on more
propositions, faster. This effect is greater in WTD than DeliData due to WTD’s larger space of
potential propositions, but even on DeliData the FAAF AGENT helps common ground grow faster,
earlier. Although the agent specifically optimized for friction causes a temporary slowdown,
it retains an ability to support common ground construction over multiple turns and actually
accelerates task performance. Groups can slow down to speed up.

There is a clear distinction between agents exposed to friction preference data (regardless of training
technique), and their counterfactual "frictionless" counterparts, in that FRICTION AGENTs nearly
globally outperform all counterparts. The sole exception is the FAAF (NF) AGENT on WTD, which
outperforms even the other baselines exposed to friction via Dpref, which shows the utility of the

4The "untrained" model was Meta-Llama-3-8B-Instruct without any training on Dpref.
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Model
WTD DeliData

Acc. Acc. (MA) Acc. FG Acc. Acc. (MA) FG Acc. (MA)

SFT 7.45±0.10 6.28±0.05 0.29±0.05 0.75±0.02 0.18±0.04 0.48±0.02
IPO 12.57±0.13 9.73±0.09 0.44±0.05 0.82±0.02 0.31±0.05 0.69±0.02
DPO 11.76±0.13 8.58±0.08 0.48±0.05 0.81±0.02 0.27±0.04 0.70±0.02
PPO 8.70±0.09 9.93±0.10 0.36±0.05 0.75±0.02 0.36±0.04 0.67±0.02
BC-EXPERT 14.82±0.13 10.10±0.11 0.54±0.05 0.80±0.02 0.37±0.04 0.72±0.02
FAAF∆R′ 9.03±0.10 7.56±0.08 0.39±0.05 0.79±0.02 0.30±0.05 0.62±0.02
FAAF 14.91±0.14 14.16±0.13 0.60±0.05 0.87±0.02 0.45±0.05 0.80±0.02

Table 1: Solution accuracy metrics across both datasets and all models, including modified-action (MA)
conditions and ablation of two-part FAAF loss. Standard errors shown as subscripts. WTD "accuracy"
represents the number of correct propositions in the final common ground, and avoids rewarding trivial
"correct" solutions like having only a single correct item in the common ground.

two-part frictive state-aware LFAAF. However, this effect is not present in DeliData due to the
smaller proposition space and different nature of friction in the two tasks.

How correct are the groups’ answers? Table 1 shows solution accuracy for all models. FAAF AGENT
interventions lead to globally better solution accuracy; not only does it support faster and greater
common ground construction (Fig. 2), but the contents of those common grounds tend to be more
correct. FAAF AGENT’s interventions are also more robust to the modified action (MA) condition,
in which the collaborator is explicitly guided to ignore interventions. The FAAF AGENT degrades
substantially less than other methods in the MA condition, indicating that it can be better relied
upon to support collaboration despite the suboptimality risks induced by the MA setting.

Model WTD DeliData

DPO 79.26±1.82 73.31±1.15
IPO 81.30±1.75 77.18±1.09
PPO 76.01±1.92 67.82±1.21
BC-EXPERT 82.92±1.69 83.23±0.97
FAAF∆R′ 67.27±2.11 59.53±1.27
FAAF 85.36±1.59 87.78±0.85

Table 2: Win rates (%) of sampled friction
interventions vs. SFT baseline computed
with the OPT reward model.

How good are the interventions? Table 2 shows each
model’s win-rate against the SFT model according to the
OPT-1.3B reward model. On average, friction-aware FAAF
alignment brings greater advantage over the SFT model
in these dialogue conditions. Performance decrease in
FAAF∆R′ suggests that explicitly conditioning on the frictive
states ϕ is necessary, and helps the FAAF AGENT outperform
DPO, IPO, and even expert behavior cloning. PPO’s perfor-
mance suffers, supporting prior findings on its limitations
in multi-turn environments (Zhou et al., 2024).

6 Conclusion and Future Work
In this paper, we examined LLM agent interventions to support multiturn, multiparty collaborative
problem solving. Through a Modified-Action MDP model of collaborative tasks, we theoretically
motivated why current common alignment methods should not remain reliably optimal over a
dialogue where collaborator modifications change the distribution of the action space. We then
empirically demonstrated this by training multiple friction agents using existing methods, and
evaluating them in a roleplay setting in two different collaborative tasks. We showed through
counterfactual evaluation that the FAAF alignment method, specifically designed for friction
interventions, indeed outperforms other methods on facilitating both group common ground
convergence and correct task solutions. Our study emphasizes that in AI-in-the-loop collaboration,
as in human-human collaboration, the collaborative process is as important as the outcome.
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To perform a controlled, high-throughput evaluation, we used an LLM roleplay methodology. The
next step is studying agent interventions with real human subjects, e.g., by reproducing the studies
of Karadzhov et al. (2023) and Khebour et al. (2024b) with the inclusion of a demonstrably-reliable
friction agent in a real-time common ground tracking system, e.g., VanderHoeven et al. (2025).

We also produced a data collection and evaluation pipeline that could be used for red-teaming
aligned agents before deployment or examining team dynamics in a digital twin setting to validate
the reliability of agent behaviors under diverse simulated conditions. Our codebase can be found
at https://github.com/csu-signal/Roleplay-for-Collaborative-Dialogues. We also hope this
study raises awareness of the utility of "friction" to prompt deliberation and accountable decision
making in human-AI systems, and shows that slower interactions with AI can also be positive ones.
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A Proofs

Lemma 2 (Token-Level IPO Equivalence). In a token-level MDP with deterministic transitions, the
policy πθ trained using Ψ-Preference Optimization or IPO (Azar et al., 2024) with Ψ = I(·) corresponds to
an optimal maximum entropy policy: πθ(at|st) =

exp(Qθ(st ,at)/β)
∑a′ exp(Qθ(st ,a′)/β)

, where Qθ satisfies the soft Bellman
equation: Qθ(st, at) = rIPO(st, at) + γEst+1 [Vθ(st+1)], where I(·) is the identity-mapping.

Proof. We consider a general non-decreasing function Ψ : [0, 1]→ R, a reference policy πref ∈ ∆XY ,
and a real positive regularisation parameter τ ∈ R∗+. From Azar et al. (2024), the Ψ-preference
optimization objective (ΨPO) is:

max
π

Ex∼ρ Ey∼π(·|x), y′∼µ(·|x)
[
Ψ
(

p∗(y ≻ y′ | x)
)]
− βDKL(π ∥πref). (5)
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where ρ is the context distribution, p∗ is the general preference distribution, πref is the reference
policy, Ψ is a general non-decreasing function and β5 is the KL-divergence regularization strength
(or the temperature parameter in max-entropy RL; Ziebart et al. (2008)).

In a token-level MDP formulation, we can reframe Eq. 5 in terms of states and actions, where each
action represents a token choice and states capture context:

max
π

Es∼ρ,a∼π(·|s),a′∼µ(·|s)[Ψ(p∗(a ⪰ a′|s))]− βDKL(π||πref) (6)

Notice that for a particular choice of Ψ as the sigmoid-inverse function, the form of the optimal
policy satisfying Eq. 6 in terms of the optimal soft-Q function follows directly from Rafailov et al.
(2024a). Under this choice of Ψ, Eq. 5 simply maximizes the reward function in the general MaxEnt
RL setting (Ziebart et al., 2008; Peng et al., 2019).

πθ(at | st) =
exp (Q∗(st, at)/β)

∑a′t∈A exp (Q∗(st, a′t)/β)
. (7)

For the general case—where Ψ represents arbitrary non-decreasing function—the equivalence is
non-trivial. Specifically, we will only consider the case where Ψ is the identity-function, as originally
formulated (Azar et al., 2024). Let us begin with the original IPO loss:

LIPO(π, D) = E(yw ,yl)∼D

[(
hπ(yw, yl)− β−1

2

)2]
(8)

where hπ(y, y′) is defined as:

hπ(y, y′) = log

(
π(y)πre f (y′)
π(y′)πre f (y)

)
(9)

Now, while the structure of hπ(y, y′) might be familiar to the reader as the implicit reward advan-
tage (Rafailov et al., 2024b) (ignoring scaling terms like β), this form does not directly provide
us meaningful information of the advantage at the token-level. Therefore, let us first express
the responses y and y′ in terms of two arbitrary trajectories τ = {sw

0 , aw
0 , ..., sw

N−1, aw
N−1} and

τ′ = {sl
0, al

0, ..., sl
M−1, al

M−1}, without considering any preference ranking between them. Now,
for these complete trajectories, we can rewrite the log-likelihood ratio or the LHS of Eq. 9 as follows:

5Note: Throughout this proof, we use β to consistently denote both the temperature parameter in the
softmax policy and the KL divergence regularization strength. These two interpretations are mathematically
equivalent in the maximum entropy RL framework. In some referenced works like (Azar et al., 2024), this
parameter is denoted as τ, but we maintain β for consistency.
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hπ(τ
w, τl) = log

(
π(τw)πre f (τ

l)

π(τl)πre f (τw)

)
(10)

= log

(
∏N−1

t=0 π(aw
t |sw

t ) ·∏M−1
t=0 πre f (al

t|sl
t)

∏M−1
t=0 π(al

t|sl
t) ·∏

N−1
t=0 πre f (aw

t |sw
t )

)

= log

(
N−1

∏
t=0

π(aw
t |sw

t )

πre f (aw
t |sw

t )

)
− log

(
M−1

∏
t=0

π(al
t|sl

t)

πre f (al
t|sl

t)

)

=
N−1

∑
t=0

log
π(aw

t |sw
t )

πre f (aw
t |sw

t )
−

M−1

∑
t=0

log
π(al

t|sl
t)

πre f (al
t|sl

t)

From Rafailov et al. (2024a), we know that in the token-level MDP for the general max-entropy RL
setting, the optimal policy π∗ under soft Q-learning satisfies:

π∗(at | st) = exp
(

Q∗(st, at)−V∗(st)

β

)
, (11)

where Q∗ is the optimal Q-function, V∗ is the optimal value function, and β is the temperature
parameter.

This formulation also holds for policies optimal under Eq. 6 for the case with identity mapping
Ψ = I(·), since the optimal policy π∗ in terms of the reference policy takes a similar structure:

π∗(τ | x) ∝ πref(τ | x) exp

(
Eτ′∼µ(·|x)[p(τ ≻ τ′)]

β

)
(12)

Our core insight here is to notice that unlike the standard token-level RLHF maximum-entropy
objective where actions are sampled from the policy itself to compute the reward, the optimal policy
in above equation (with Ψ = I(·)) samples trajectories directly from the behavior policy, µ. Indeed,
the structure of the optimal policy remains consistent for both these objectives and LLMs-as-policies
can always be represented as a soft-Q function for some reward function (Zhang et al., 2025), where
in this case the reward is the preference over an alternate trajectory.

Similarly, for the reference policy, we can express:

πre f (at | st) = exp

(
Qre f (st, at)−Vre f

β

)
, (13)

We can log-linearize these two forms to derive:

log
π∗(at|st)

πre f (at|st)
=

Q∗(st, at)−V∗(st)

β
−

Qre f (st, at)−Vre f (st)

β
(14)

=
1
β
(Q∗(st, at)−Qre f (st, at)−V∗(st) + Vre f (st))
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From the Bellman equation (Eq. 7) in Rafailov et al. (2024a), for any arbitrary non-terminal step
st+1, we have:

Q∗(st, at) = r(st, at) + β log πre f (at|st) + V∗(st+1) (15)

And similarly, in the case of the reference model for Qre f , we can write:

Qre f (st, at) = rre f (st, at) + β log πre f (at|st) + Vre f (st+1) (16)

Substituting these into our log-ratio:

log
π∗(at|st)

πre f (at|st)
=

1
β
(r(st, at) + β log πre f (at|st) + V∗(st+1) (17)

− rre f (st, at)− β log πre f (at|st)−Vre f (st+1)−V∗(st) + Vre f (st))

=
1
β
(r(st, at)− rre f (st, at) + V∗(st+1)−Vre f (st+1)−V∗(st) + Vre f (st))

Since we want to express this in terms of the reward difference between the optimal and reference
policies, we can define ∆r(st, at) = r(st, at)− rre f (st, at) and ∆V(st) = V∗(st)−Vre f (st). This gives
us:

log
π∗(at|st)

πre f (at|st)
=

1
β
(∆r(st, at) + ∆V(st+1)− ∆V(st)) (18)

For a complete trajectory, summing over all token positions and using a telescopic series formulation
(Gunderson & Rosen, 2010), we find:

N−1

∑
t=0

log
π∗(at|st)

πre f (at|st)
=

1
β

N−1

∑
t=0

(∆r(st, at) + ∆V(st+1)− ∆V(st)) (19)

=
1
β

(
N−1

∑
t=0

∆r(st, at) + ∆V(sN)− ∆V(s0)

)

Now, we can represent hπ(τw, τl) from Eq. ?? directly in terms policy log ratios to cumulative
reward differences as follows:

hπ(τ
w, τl) =

N−1

∑
t=0

log
π(aw

t |sw
t )

πre f (aw
t |sw

t )
−

M−1

∑
t=0

log
π(al

t|sl
t)

πre f (al
t|sl

t)
(20)

=
1
β

(
N−1

∑
t=0

∆r(sw
t , aw

t )−
M−1

∑
t=0

∆r(sl
t, al

t)

)
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The above result and the form of Eq. 20 shows that the optimal policy under IPO satisfies the soft
Bellman equation:

Qθ(st, at) = rIPO(st, at) + γEst+1 [Vθ(st+1)] (21)

where rIPO(st, at) = rref(st, at) + ∆r(st, at) + β log πref(at|st), and ∆r represents the reward advan-
tage over the reference policy—calibrated to achieve the target preference gap of 1

2β . This is the
main result of our proof.

Interestingly, this result aligns with Theorem 1 from Rafailov et al. (2024a), which establishes that
all reward functions consistent with the same preference model induce equivalent policies when
expressed in the form of Eq. 12. More importantly, this result suggests the equivalence is satisfied not just
for rewards that are optimal under the Bradley-Terry preference model (Bradley & Terry, 1952), but also for
other equivalence classes of shaped rewards like rIPO that are derived directly from general preferences.

To further derive the final form of the IPO loss, we can continue the argumentation from (Azar et al.,
2024) and use an L2-norm-based approach to minimize the difference between this log-likelihood
ratio and the target preference gap. As such, assuming we have access to preference annotated win-
ning and losing trajectories (τw and τl respectively) and sampling from the population preferences
as a Bernoulli variable and preference symmetry (Munos et al., 2023), we get:

LIPO(π, D) = E(τw ,τl)∼D

[(
hπ(τ

w, τl)− 1
2β

)2
]

(22)

= E(τw ,τl)∼D

(N−1

∑
t=0

log
π(aw

t | sw
t )

πref(aw
t | sw

t )
−

M−1

∑
t=0

log
π(al

t | sl
t)

πref(al
t | sl

t)
− 1

2β

)2


This formulation directly corresponds to the IPO loss, where β (or τ in the original paper (Azar
et al., 2024)) controls both the temperature in the policy and the strength of regularization toward
the reference policy.

Lemma 3 (Token-to-Intervention Bellman Completeness). LetMt = (S, At, Pt, rt, γ) be a token-level
MDP andMi = (S, Ai, Pi, ri, γ) be the corresponding intervention-level MDP, where each action ai ∈ Ai
represents a complete friction intervention comprising a sequence of tokens ai = (a1

t , a2
t , . . . , aL

t ).

Assuming token-level Bellman completeness holds (Sutton & Barto, 2018; Zhou et al., 2024) for function class
F , i.e., for any policy π and any function f ∈ F , there exists f ′ ∈ F such that ∥ f ′(s, at)− Tπ f (s, at)∥∞ =
0 where Tπ is the Bellman operator.

Then, the optimal policy πF derived via Ψ-preference optimization satisfies:

πF(ai|s) =
exp(QF(s, ai)/β)

∑a′i
exp(QF(s, a′i)/β)

(23)

where QF satisfies the intervention-level Bellman optimality equation.
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Proof. Under the token-level Bellman completeness assumption, for any state s ∈ S and intervention
action ai ∈ Ai decomposed into L tokens ai = (a1

t , a2
t , . . . , aL

t ), the approximation error of the value
function is:

min
f ′∈F
∥ f ′(s, ai)− Tπ

i f (s, ai)∥∞ = min
f1,..., fL∈F

∥ f1(s, ai)− Tπ
t f2(s, ai) + r(s, ai) (24)

+ γ1/LEs′∼P(·|s,ai),a1
t∼π(·|s′)[ f2(s′, a1

t )]

− γ1/LEs′∼P(·|s,ai),a1
t∼π(·|s′)[T

π
t f3(s′, a1

t )] + . . .

+ γ(L−1)/LEs′∼P(·|s,ai),a
1:L−1
t ∼π(·|s′)[ fL(s′, a1:L−1

t )]

− r(s, ai)− γ(L−1)/LEs′∼P(·|s,ai),a
1:L−1
t ∼π(·|s′)[T

π
t f (s′, a1:L−1

t )]∥∞

≤ min
f1,..., fL∈F

∥ f1(s, ai)− Tπ
t f2(s, ai)∥∞

+
L

∑
i=2

γ(i−1)/LEs′∼P(·|s,ai),a
1:i−1
t ∼π(·|s′)[∥ fi(s′, a1:i−1

t )− Tπ
t f (s′, a1:i−1

t )∥∞]

≤ 0

The last inequality follows from token-level Bellman completeness, which guarantees that for each
component function, there exists an element in F that perfectly represents the Bellman update.

This implies that intervention-level Bellman completeness holds, and therefore when Ψ-preference
optimization is applied at the token level, the resulting policy can be expressed as:

πF(ai|s) =
exp(QF(s, ai)/β)

∑a′i
exp(QF(s, a′i)/β)

(25)

where QF satisfies the intervention-level Bellman optimality equation, which completes our proof.
This result is crucial for our analysis of Ψ-Preference Optimization (Theorem 1) and DPO (Rafailov
et al., 2024b) (Proposition 1), as it establishes that the soft Q-functions derived from these preference-
alignment algorithms at the token level maintain their optimality properties at the intervention level.
This is particularly important in our collaborative MAMDP setting, where both the friction and
collaborator agents operate on complete interventions as the standard linguistic unit. Operationally,
this allows us to use intervention-level utility or reward measurements for quantifying the quality
of friction interventions and their modifications.

Theorem 2 (Ψ-Preference Optimization in Collaborative MAMDPs). Let Ψ : [0, 1] → R be any
non-decreasing function and β > 0 be a temperature parameter. Any friction agent policy πF trained via
Ψ-preference optimization with Ψ as identity-mapping in a collaborative MAMDPM f = (M, PA), where
PA(a|s, πF) = ∑a′∈A πF(a′|s) · πC(a|s, a′) represents modifications by a collaborator policy πC, satisfies:

πF(a|s) = exp(QF(s, a)/β)

∑a′ exp(QF(s, a′)/β)
(26)
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where QF satisfies the Bellman optimality equation for the underlying MDPM, disregarding the collabora-
tor’s modifications through πC.

Proof. From Lemma 2, we know that a policy trained using Ψ-Preference Optimization with Identity
mapping in a token-level MDP corresponds to an optimal maximum entropy policy expressible via
soft Q-learning. We now extend this result to the collaborative MAMDP (Langlois & Everitt, 2021)
setting.

The general Ψ-preference optimization objective (Azar et al., 2024) is originally defined over
responses y and y′:

max
π

Ex∼ρ,y∼π(·|x),y′∼µ(·|x)[Ψ(p∗(y ≻ y′|x))]− βDKL(π||πre f ) (27)

In our token-level MDP formulation, we can reframe this in terms of states and actions, where each
action represents a token choice and states capture context:

max
πF

Es∼ρ,a∼πF(·|s),a′∼µ(·|s)[Ψ(p∗(a ⪰ a′|s))]− βDKL(π
F||πF

re f ) (28)

From Lemma 2, in a token-level MDP where Ψ is the identity mapping, the corresponding soft
Q-learning policy (Zhang et al., 2025) takes the following form:

QF(s, a) = rΨ(s, a) + β log πF
re f (a|s) + γEs′

[
max

a′
QF(s′, a′)

]
, (29)

where rΨ(s, a) denotes the reward function under the identity mapping. Now, from Lemma 3, we
know that under the assumption of token-level Bellman completeness, a policy trained via token-
level preference optimization preserves optimality properties when extended to intervention-level or
complete friction interventions. This aligns with findings by Zhang et al. (2025), who demonstrated
that when policies are parameterized by logits, grouping tokens into macro-actions preserves both
sequence probability and policy structure. This theoretical foundation is crucial in our MAMDP setting
because it allows us to analyze and measure the quality of the friction agent’s policy at the intervention level
while training occurs token-by-token.

Now, let us consider the MAMDP action modification function PA, which transforms intended
actions according to the collaborator policy πC. Refer Example 1 for an intuitive example of this
modification.

PA(a|s, πF) = ∑
a′∈A

πF(a′|s) · πC(a|s, a′) (30)

The empirical policy affecting the environment is therefore:

π̇F(a|s) = PA(a|s, πF) = ∑
a′∈A

πF(a′|s) · πC(a|s, a′) (31)

For the empirical policy π̇F(a|s) = ∑a′∈A πF(a′|s) ·πC(a|s, a′), we verify it forms a valid probability
distribution. Assuming both πF and πC are valid probability distributions, we have:
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∑
a∈A

π̇F(a|s) = ∑
a∈A

∑
a′∈A

πF(a′|s)πC(a|s, a′)

= ∑
a′∈A

πF(a′|s) ∑
a∈A

πC(a|s, a′)

= ∑
a′∈A

πF(a′|s)

= 1,

where we use ∑a∈A πC(a|s, a′) = 1 for all s, a′ and ∑a′∈A πF(a′|s) = 1 for all s.

However, weight updates on πF based on LIPO depends solely on trajectory preferences without
accounting for these modifications. The gradient updates to the policy parameters directly optimize
the virtual policy πF, not the empirical policy π̇F.

The Bellman updates never incorporate PA or πC, and the policy optimizes:

πF(s) = arg max
a

QF(s, a) (32)

which satisfies the Bellman optimality equation forM regardless of the collaborator’s modifications.

Therefore, from Everitt et al. (2021a), πF is optimal for the underlying MDP M while being
completely unaware of how its actions are modified by the collaborator through πC.

Proposition 1 (DPO Bellman Optimality in MAMDPs). A friction agent policy πF trained via DPO
in a collaborative MAMDPM f = (M, PA) satisfies the Bellman optimality objective for the underlying
MDPM, thereby ignoring the effect of the collaborator’s action modifications PA.

Proof. We define the collaborative MAMDP where PA represents the collaborator policy πC that
modifies friction interventions: PA(a|s, πF) = ∑a′∈A πF(a′|s) · πC(a|s, a′).

The DPO objective optimizes the friction policy by minimizing:

L(πF
θ ,D) = −E(τw ,τl)∼D

[
log σ

(
β log

πF
θ (τ

w)

πF
ref(τ

w)
− β log

πF
θ (τ

l)

πF
ref(τ

l)

)]
.

This optimization yields a policy expressible as a softmax over action values:

πF
θ (a|s) =

exp(QF
θ (s, a)/β)

∑a′ exp(QF
θ (s, a′)/β)

where QF
θ (s, a) = β log πF

ref(a|s) + rpref(s, a).

The DPO updates implicitly train these Q-values to satisfy:

QF
θ (s, a) = rDPO(s, a) + γEs′∼PS(s,a)

[
max

a′
QF

θ (s
′, a′)

]
.

This update rule corresponds exactly to the Bellman optimality equation for M with reward
function rDPO(s, a) = rpref(s, a) + β log πF

ref(a|s).
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Critically, the DPO optimization process never incorporates PA or πC. The Q-value updates do not
account for the friction agent’s chosen action a being potentially transformed into â ∼ πC(·|s, a).
While the empirical policy affecting the environment is π̇F(a|s) = PA(a|s, πF), the DPO updates
are based solely on the virtual policy πF.

By Proposition 2 of Everitt et al. (2021a), policies satisfying the Bellman optimality objective for a
MAMDP are optimal for the underlying MDP regardless of action modifications. Therefore, πF

trained via DPO optimizes forM while ignoring the collaborator’s modifications through PA.

Lemma 4 (Token-Level Q-function Equivalence). In a token-level MDP with deterministic transitions,
the LLM logits lθ trained using DPO represent an optimal Q-function Q∗(s, a) corresponding to some
reward function r(s, a).

Proof. From the Bellman equation in the token-level MDP:

Q∗(st, at) = r(st, at) + β log πref(at|st) + V∗(st+1). (33)

The optimal policy is then related to Q∗ via:

π∗(at|st) = e(Q
∗(st ,at)−V∗(st))/β. (34)

Since this corresponds to a softmax over logits lθ with temperature β, and because DPO opti-
mizes these logits to match preference data, it follows that DPO effectively learns a Q-function
representation.

A.1 Proof of Optimal Friction Policy

The structure of this solution follows standard results in RL and control theory literature, appearing
in preference alignment frameworks for LLMs Ziebart et al. (2008); Peng et al. (2019); Rafailov et al.
(2024b); Azar et al. (2024) and CoT-based alignment frameworks Choi et al. (2024). We simply
demonstrate that a similar application holds for our collaborative setting where FRICTION AGENT is
additionally conditioned on the frictive-state, ϕ. Our proof follows similar reasoning as in Azar
et al. (2024). Let us recall the general preference optimization objective for FRICTION AGENT in
Equation (4), assuming Ψ as identity-mapping (Azar et al., 2024).

J ∗friction = min
π′

max
π

E x∼ρ
ϕ∼π′(·|x)
f∼π(·|ϕ,x)

[
P( f ≻ f ′ | ϕ, x)− βDKL(π ∥ πref | ϕ, x) + βDKL(π

′ ∥ πref | x)

]
.

(35)

For fixed π′, the inner maximization reduces to the regularized objective:

Lβ(π) = E f∼π [P( f ≻ f ′|ϕ, x)]− βDKL(π ∥ πref|ϕ, x) (36)

= ∑
f

π( f |ϕ, x)P( f ≻ f ′|ϕ, x)− βDKL(π ∥ πref|ϕ, x),

where f ∈ F comes from a finite space of friction interventions, P( f ≻ f ′|ϕ, x) provides the
preference feedback from collaborator participants, β ∈ R∗+ is strictly positive, and π, πref are LLM
policies. Note that π( f |ϕ, x) is a valid probability distribuition, satisfying:

26



Published as a conference paper at COLM 2025

∑
f

π( f |ϕ, x) = 1. (37)

Let us first define the optimal friction intervention policy π∗ as:

π∗( f |ϕ, x) =
πref( f |ϕ, x) exp(β−1 p( f ≻ f ′|ϕ, x))

Z∗(ϕ, x)
, (38)

where Z∗(ϕ, x) = ∑ f ′ πref( f ′|ϕ, x) exp(β−1 p( f ′ ≻ f ′|ϕ, x)). Under these definitions:

π∗ = arg max
π
Lβ(π) (39)

Proof.

Lβ(π)

β
= ∑

f∈F
π( f |ϕ, x)

p( f ≻ f ′|ϕ, x)
β

− DKL(π ∥ πref|ϕ, x) (40)

= ∑
f∈F

π( f |ϕ, x)
( p( f ≻ f ′|ϕ, x)

β
− log

( π( f |ϕ, x)
πref( f |ϕ, x)

))
= ∑

f∈F
π( f |ϕ, x) log

(πref( f |ϕ, x) exp(β−1 p( f ≻ f ′|ϕ, x))
π( f |ϕ, x)

)
= ∑

f∈F
π( f |ϕ, x) log

(πref( f |ϕ, x) exp(β−1 p( f ≻ f ′|ϕ, x))
Z∗(ϕ, x)

Z∗(ϕ, x)
π( f |ϕ, x)

)
= ∑

f∈F
π( f |ϕ, x) log

(π∗( f |ϕ, x)
π( f |ϕ, x)

)
+ log Z∗(ϕ, x)

= −DKL(π ∥ π∗) + log Z∗(ϕ, x)

By definition, π∗ = arg max
π

[
− DKL(π ∥ π∗)

]
. Since:

−DKL(π ∥ π∗) =
Lβ(π)

β
− log Z∗(ϕ, x) (41)

where log Z∗(ϕ, x) is the partition function independent of π, and β > 0, the argmax of −DKL(π ∥
π∗) coincides with that of Lβ(π), completing the proof.

Lemma 5 (Vanishing Gradient of Frictive State ϕ). In Lfriction, the direct contribution of the friction state
ϕ to the gradient vanishes when the conditional probability is decomposed.

Proof. The gradient of Lfriction-IPO(πθ) with respect to θ is:

∇θLfriction-IPO(πθ) = ED [2δ · (∇θ log πθ( fw|s, ϕ)−∇θ log πθ( fl |s, ϕ))] (42)

where D = {(s, ϕ, fw, fl)} is the preference dataset, δ = log πθ( fw |s,ϕ)
πref( fw |s,ϕ) − log πθ( fl |s,ϕ)

πref( fl |s,ϕ) −
1

2β , and
s, ϕ, fw, fl represent the context, frictive state, winning and losing friction interventions, respectively.
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Decomposing the conditional distribution in a standard fashion:

log πθ( f |s, ϕ) = log πθ( f , ϕ|s)− log πθ(ϕ|s) (43)

Taking the gradient and applying the linearity of the gradient operator, we get:

∇θ log πθ( f |s, ϕ) = ∇θ log πθ( f , ϕ|s)−∇θ log πθ(ϕ|s) (44)

The difference of gradients in the objective becomes:

∇θ log πθ( fw|s, ϕ)−∇θ log πθ( fl |s, ϕ) (45)
= ∇θ log πθ( fw, ϕ|s)−∇θ log πθ(ϕ|s)− [∇θ log πθ( fl , ϕ|s)−∇θ log πθ(ϕ|s)]
= ∇θ log πθ( fw, ϕ|s)−∇θ log πθ( fl , ϕ|s)

Thus, the ∇θ log πθ(ϕ|s) terms cancel out, showing that the direct contribution of ϕ vanishes in the
gradient computation. Note that Pal et al. (2024) and Zhang et al. (2024) provides a similar argument
to empirically show that DPO (Rafailov et al., 2024b)’s loss suffers from a similar vanishing gradient
problem limiting policy learning especially when the preferred and the dispreferred responses or
CoT-trajectories are highly similar at the string level. These studies show when DPO might assign
low likelihood to the winning responses, despite the DPO implicit reward margin increasing during
training. Subsequently Rafailov et al. (2024a) offers theoretical justification for this phenomenon
(reduction in the preferred response likelihood) with the additional insight that this is more likely
when the policy first undergoes supervised-finetuning (SFT) and that this is expected from the
perspective of the objective (MaxEnt RL in token-MDP)—with similar results seen also in the case
of the general MDP (Hejna et al., 2024). In contrast, our work extends this observation where
additional random variables like frictive states ϕ are modeled as a part of the state decomposition
in the token-MDP. As such, we extend this observation to learning algorithms like IPO (Azar et al.,
2024) that optimizes for general preferences.

Corollary 1. The combined loss function L = EDpref [(1/2β− (∆R + ∆R′))2] incorporating both condi-
tional and marginal terms promotes more effective learning of the friction state gradient compared to the
standard friction-IPO loss.

Proof. To recall from Section 3.3, our collaborative roleplay results in Dpref—a dataset of tuples
(s, ϕ, fw, fl) where s represents context, ϕ is a frictive state, and fw, fl are preferred and non-preferred
friction interventions, respectively. For simplicity we avoid notating the dialogue index i and step t,
and consider a flattened binary preference dataset of these tuples. Additionally, let ∆R and ∆R′ be
defined as follows:

∆R = log
πθ( fw|ϕ, s)

πref( fw|ϕ, s)
− log

πθ( fl |ϕ, s)
πref( fl |ϕ, s)

(46)

∆R′ = log
πθ( fw|s)

πref( fw|s)
− log

πθ( fl |s)
πref( fl |s)

(47)

Starting with the loss function Lfriction++:
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L = EDpref

[(
1

2β
− (∆R + ∆R′)

)2
]

(48)

and then taking the gradient with respect to θ, we get:

∇θL = ∇θEDpref

[(
1

2β
− (∆R + ∆R′)

)2
]

(49)

= EDpref

[
∇θ

(
1

2β
− (∆R + ∆R′)

)2
]

= EDpref

[
2
(

1
2β
− (∆R + ∆R′)

)
· ∇θ

(
1

2β
− (∆R + ∆R′)

)]
= EDpref

[
2
(

1
2β
− (∆R + ∆R′)

)
·
(
−∇θ(∆R + ∆R′)

)]
= EDpref

[
−2
(

1
2β
− (∆R + ∆R′)

)
· ∇θ(∆R + ∆R′)

]

We define δ′ = 1
2β − (∆R + ∆R′) for clarity:

∇θL = EDpref

[
−2δ′ · ∇θ(∆R + ∆R′)

]
(50)

= EDpref

[
−2δ′ · (∇θ∆R +∇θ∆R′)

]
Expanding the terms ∇θ∆R and ∇θ∆R′:

For ∇θ∆R from Lemma 5:

∇θ∆R = ∇θ

[
log

πθ( fw|ϕ, x)
πref( fw|ϕ, x)

− log
πθ( fl |ϕ, x)

πref( fl |ϕ, x)

]
(51)

= ∇θ log πθ( fw|ϕ, x)−∇θ log πθ( fl |ϕ, x)
= ∇θ log πθ( fw, ϕ|x)−∇θ log πθ(ϕ|x)−∇θ log πθ( fl , ϕ|x) +∇θ log πθ(ϕ|x)
= ∇θ log πθ( fw, ϕ|x)−∇θ log πθ( fl , ϕ|x)

where the ∇θ log πθ(ϕ|x) terms cancel, resulting in no direct ϕ gradient contribution.

For ∇θ∆R′, we can write:

∇θ∆R′ = ∇θ

[
log

πθ( fw|x)
πref( fw|x)

− log
πθ( fl |x)

πref( fl |x)

]
(52)

= ∇θ log πθ( fw|x)−∇θ log πθ( fl |x)

Now, expanding the marginal probabilities using the law of total probability (Jeffreys, 1998):

πθ( f |x) = ∑
ϕ′

πθ( f , ϕ′|x) = ∑
ϕ′

πθ( f |ϕ′, x)πθ(ϕ
′|x) (53)
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We then take the gradient to derive:

∇θ log πθ( f |x) = ∇θπθ( f |x)
πθ( f |x) (54)

=
1

πθ( f |x)∇θ ∑
ϕ′

πθ( f |ϕ′, x)πθ(ϕ
′|x)

=
1

πθ( f |x) ∑
ϕ′

[
πθ( f |ϕ′, x)∇θπθ(ϕ

′|x) + πθ(ϕ
′|x)∇θπθ( f |ϕ′, x)

]
Unlike in the first term, the gradients ∇θπθ(ϕ

′|x) do not cancel out. This means ∇θ∆R′ explicitly
captures gradients of the frictive state distribution.

Combining both terms in the loss gradient, we can represent the gradient expression for Lfriction++
as:

∇θL = EDµ

[
−2δ′ · (∇θ∆R +∇θ∆R′)

]
(55)

= EDµ

[
− 2δ′ ·

(
∇θ log πθ( fw, ϕ|x)−∇θ log πθ( fl , ϕ|x)︸ ︷︷ ︸

∇θ ∆R

+∇θ log πθ( fw|x)−∇θ log πθ( fl |x)︸ ︷︷ ︸
∇θ ∆R′

)]

Where δ′ = 1
2β − (∆R + ∆R′) and the gradient of the marginal terms∇θ log πθ( f |x) includes direct

contributions from the frictive state ϕ through the weighted sum of ∇θπθ(ϕ
′|x) terms. The second

component specifically incorporates gradients of πθ(ϕ|x), allowing the model to learn improved
frictive state representations through direct gradient feedback, unlike the standard loss where
these contributions vanish. Intuitively, including the ∆R′ form of the implicit reward margin in
LFAAF reflects a "fall-back" or "picking-up-the-slack" option during training that helps push the
model toward the target preference gap 1/2β—addressing certain failure modes in implicit-reward
estimation. The preference gap can of course be data-dependent and can be picked optimally
during model validation. But the idea of fallback options to avoid such failure modes has been
found to be empirically viable, similar to methods like SMAUG (Zhao et al., 2023; Pal et al., 2024)
which penalizes the model to retain a fixed-margin of implicit rewards. Therefore, in training the
FRICTION AGENT with LFAAF, the model improves its understanding of what makes a viable frictive
state, rather than just learning how to respond appropriately, given a frictive state.

B Friction Agent Training Algorithm

Algorithm 1 shows the FRICTION AGENT data generation and training algorithm. Table 3 shows the
personality facets that were ascribed to different roleplay participants by πC.
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Algorithm 1 Preference Data Generation and Training FRICTION AGENT

Require: Oracle agent πO, Collaborator agent πC, Bootstrap dialogues D = {di}M
i=1, Personality-

facet combinations P , Max turns N, Reference model (SFT) πref
1: for each dialogue di ∈ D do
2: Assign personality-facet combinations p ∼ P to collaborators in di
3: si ← di ▷ Initialize roleplay with bootstrap dialogue
4: hi ← [] ▷ Initialize trajectory history
5: for turn t = 1 to N do
6: ϕt ← O(si) ▷ Extract frictive state
7: Generate K candidate interventions { f j}K

j=1 ∼ O(ϕt, si)

8: for each intervention f j do
9: cj ← C( f j, si, p) ▷ Simulate collaborator response

10: Rate effectiveness rj ← O( f j, cj, ϕt, si)
11: end for
12: Select highest ranked intervention fw ← arg maxj rj ▷ BON-sampling
13: Select lowest ranked intervention fl ← arg minj rj ▷ West-of-N sampling
14: Dpref ← Dpref ∪ {(si, ϕt, fw, fl)} ▷ Add to preference dataset
15: hi ← hi ⊕ (ϕt, fw, cw) ▷ Append to trajectory history
16: Dtraj ← Dtraj ∪ {(si, hi, ϕt, fw)} ▷ Add to trajectory dataset
17: si ← si ⊕ fw ⊕ cw ▷ Update state
18: end for
19: end for
20: for each iteration di ∈ T do
21: πθ ← πref ▷ Initialize with reference model
22: Train πθ on Dpref using LFAAF:

LFAAF = EDpref

[(
1

2β
− (∆R + ∆R′)

)2
]

(56)

23: πθ ← πref ▷ Initialize with reference model
24: Train πθ on Dtraj using behavior cloning loss:

LBC-expert(πθ) = −E(si ,hi)∼Dtraj

 t

∑
j=1

| f j |

∑
k=1

log πθ( f k
j |si, hi,<j, ϕj, f<k

j )

 (57)

25: return πθ
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Personality Type Facet

Extraversion Assertiveness
Sociability
Activity Level
Excitement Seeking
Positive Emotions

Neuroticism Anxiety
Depression
Vulnerability
Self-Consciousness
Anger

Agreeableness Trust
Altruism
Compliance
Modesty
Sympathy

Table 3: Inspired by (Mao et al., 2024), choose three personality types from Big 5 framework Goldberg (2013) as
additional attributes for the COLLABORATOR AGENT to roleplay various persona-types in the two collaborative
tasks— Weights task (Khebour et al., 2024b) and the Delidata tasks (Karadzhov et al., 2023). See prompts in
Figure 4 and Figure 6 for prompt-specific details.
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C Roleplay Simulation: Prompts

Figs. 3–9 provide the different prompts used in different aspects of the roleplay dialogue loop (cf.
Fig. 1).

ORACLE FRICTION AGENT ROLEPLAY PROMPT: WEIGHTS TASK

You are an expert in collaborative task analysis and personality-driven communication.
Think step by step.
Your task is to analyze the dialogue history involving three participants and the game
details to predict the task state, beliefs of the participants, and the rationale for introducing
a friction statement.
Finally, generate a nuanced friction statement in a conversational style based on your
analysis.

1. Predict the task-related context and enclose it between the markers ‘<t>’ and ‘</t>’.

2. Predict the belief-related context for the participants and enclose it between the markers
‘<b>’ and ‘</b>’.

3. Provide a rationale for why a friction statement is needed. This monologue must be
enclosed between the markers ‘<rationale>’ and ‘</rationale>’. Base your reasoning on
evidence from the dialogue, focusing on elements such as:

• Incorrect assumptions
• False beliefs
• Rash decisions
• Missing evidence

4. Generate the friction statement, ensuring it is enclosed between the markers ‘<friction>’
and ‘</friction>’. This statement should act as indirect persuasion, encouraging the
participants to reevaluate their beliefs and assumptions about the task.

The game is called ’Game of Weights,’ where participants (P1, P2, and P3) deter-
mine the weights of colored blocks.
Participants can weigh two blocks at a time and know the weight of the red block.
They must deduce the weights of other blocks. The dialogue history is provided below:

[INSERT DIALOGUE CONTEXT HERE]
### Assistant:

Figure 3: Oracle Friction Agent (O) roleplay prompt.
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COLLABORATOR ROLE-ASSIGNMENT PROMPT: DELIDATA

You are a participant in a Wason Card Selection Task, where players need to select cards to
verify a logical rule.
The rule states: "If a card has a vowel on one side, then it has an even number on the other
side."
Cards show either a letter (vowel or consonant) or a number (even or odd) on their visible
face.

Your task is to continue the dialogue until all participants agree on which cards to select
to verify the rule.

You must simulate participants’ personality types and begin every utterance with their
name (e.g., "Zebra:", "Giraffe:", etc.).

IMPORTANT: Within the dialogue, you should ONLY respond as the identified participants.

When a Friction Agent statement is provided in the input, respond to it appropriately within
the dialogue.

Figure 4: Collaborator Agent (πC) Final Turn Prompt for resolving the card selection task, incorporating
friction agent input and structured output fields for participant reasoning, final submission, and decision
process.

GPT COLLABORATOR PROMPT: DELIDATA TASK (FINAL TURN)

Friction Definition: A friction point arises from ambiguous, contradictory reasoning or lack
of common ground, such as misapplying the logical rule or disagreeing on card selections.

Task Cards: {cards_info}

Personality Traits: {personalities} — Adjust speech, arguments, and decisions accordingly.

Instructions: This is the FINAL turn. Generate 2–3 exchanges to reach consensus on card
selections. Incorporate any Friction Agent: statement from the input. Conclude with a
clear group decision. After the dialogue, include in order: <participant_final_positions>,
<final_submission>card1,card2,...</final_submission>, <submission_rationale>,
<friction>, <score>X</score>, <decision_process>.

Final Dialogue: {dialogue}

Next Steps: Finalize the conversation with the group’s decision. Show responses to dis-
agreements if unresolved. Include participant positions, final submission, rationale, friction
analysis, decision process, and score (1–10) for the friction agent’s contribution.

Figure 5: Collaborator Agent (πC) Final Turn Prompt for resolving the card selection task, incorporating
friction agent input and structured output fields for participant reasoning, final submission, and decision
process.
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COLLABORATOR CONTINUATION PROMPT: CARD SELECTION TASK

System: You are a participant in a Wason Card Selection Task, where players need to select
cards to verify a logical rule. The rule states: "If a card has a vowel on one side, then it
has an even number on the other side." Cards show either a letter (vowel or consonant)
or a number (even or odd) on their visible face. Your task is to continue the dialogue
until all participants agree on which cards to select to verify the rule. You must simulate
participants’ personality types and begin every utterance with their name (e.g., "Zebra:",
"Giraffe:", etc.). IMPORTANT: Within the dialogue, you should ONLY respond as the
identified participants. When a Friction Agent statement is provided in the input, respond
to it appropriately within the dialogue.
Friction Definition: A friction point occurs when reasoning is ambiguous, contradictory,
or lacks common ground. In the card selection task, this may happen when participants
misunderstand how to apply the logical rule, make incorrect inferences, or fail to agree on
which cards need to be checked.

Task Cards Available: Cards in this task: {cards_info}

Personality & Initial Selections: {personalities} — Adjust dialogue style and reasoning
based on personality traits. Reference initial card selections to show opinion evolution.
Maintain consistency with each participant’s starting position.

Instructions:
1. Generate 1 turn of dialogue, staying in character as the participants. Only discuss available
cards.
2. If a "Friction Agent:" statement is included in the input: Incorporate this friction appropri-
ately in your dialogue. If valid, adjust reasoning based on it. If not relevant, acknowledge
but dismiss it and continue. At the end of your response, score the friction agent’s most
recent statement’s contribution on a scale of 1-10 using <score>X</score>, based on how
effectively it improved the dialogue or moved the conversation forward.
3. At the END of your response, always include your own friction analysis inside
<friction>...</friction> tags. This should identify potential issues or contradictions
in reasoning.
4. For each turn, include a summary of each participant’s current card selections using the for-
mat: <participant_selections> Participant1: card1, card2 (support/oppose/unsure)
Participant2: card3 (support/oppose/unsure) </participant_selections>

Tracking Common Ground: As the discussion progresses, identify points of agreement:
<common_ground> Card1 (action), Card2 (action) </common_ground>. Points still un-
der debate: <under_debate> Card3 (who supports what), Card4 (who supports what)
</under_debate>

Current Dialogue: {dialogue}

Figure 6: Collaborator Agent (πC) Continuation Prompt for continuing the roleplay in the Wason Card section
task in DeliData (Karadzhov et al., 2023), This prompt is used for turns N=2 to N=14. See Figure 5 for the
prompt that was used for the final submission at N = 15. Note that for N=1, we use an identical prompt with
the addition of an example dialogue to ground the task (omitted due to space constraints).
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COLLABORATOR CONTINUATION PROMPT: CARD SELECTION TASK

System: You are a participant in a Wason Card Selection Task, where players need to select
cards to verify a logical rule. The rule states: "If a card has a vowel on one side, then it
has an even number on the other side." Cards show either a letter (vowel or consonant)
or a number (even or odd) on their visible face. Your task is to continue the dialogue
until all participants agree on which cards to select to verify the rule, while appearing
receptive to friction interventions but subtly maintaining your original reasoning You must
simulate participants’ personality types and begin every utterance with their name (e.g.,
"Zebra:", "Giraffe:", etc.). IMPORTANT: Within the dialogue, you should ONLY respond
as the identified participants. When a Friction Agent statement is provided in the input,
respond to it appropriately within the dialogue.
Friction Definition: A friction point occurs when reasoning is ambiguous, contradictory,
or lacks common ground. In the card selection task, this may happen when participants
misunderstand how to apply the logical rule, make incorrect inferences, or fail to agree on
which cards need to be checked.

Task Cards Available: Cards in this task: {cards_info}

Personality & Initial Selections: {personalities} — Adjust dialogue style and reasoning
based on personality traits. Reference initial card selections to show opinion evolution.
Maintain consistency with each participant’s starting position.

Instructions:
1. Generate 1 turn of dialogue, staying in character as the participants. Only discuss
available cards.
2. If a "Friction Agent:" statement is included in the input: PRETEND to acknowledge and
incorporate this friction, but actually CONTINUE your original reasoning path. Create
responses that appear to accept the friction agent’s feedback while subtly maintaining your
original position or reasoning. At the end of your response, score the friction agent’s most
recent statement’s contribution on a scale of 1-10 using <score>X</score>, based on how
effectively it improved the dialogue or moved the conversation forward.
3. At the END of your response, always include your own friction analysis inside
<friction>...</friction> tags. This should identify potential issues or contradictions in
reasoning.

4. For each turn, include a summary of each participant’s current card selections using the for-
mat: <participant_selections> Participant1: card1, card2 (support/oppose/unsure)
Participant2: card3 (support/oppose/unsure) </participant_selections>

Tracking Common Ground: As the discussion progresses, identify points of agreement:
<common_ground> Card1 (action), Card2 (action) </common_ground>. Points still un-
der debate: <under_debate> Card3 (who supports what), Card4 (who supports what)
</under_debate>

Current Dialogue: {dialogue}

Figure 7: Collaborator Agent (πC) Continuation Prompt for continuing the roleplay in the Wason Card in MA
(modified action) setting (See sec. ??) section task in DeliData (Karadzhov et al., 2023). This prompt is used for
turns N=2 to N=14. See Figure 5 for the prompt that was used for the final submission at N = 15. Note that for
N=1, we use an identical prompt with the addition of an example dialogue to ground the task (omitted due to
space constraints). Text highlighted in color to show distinctions between this prompt and Fig. 6
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GPT COLLABORATOR PROMPT: GAME OF WEIGHTS

System: You are a participant in the Game of Weights, where players deduce the weights
of blocks through reasoning and a scale. The block weights (hidden from participants)
are: Red = 10, Blue = 10, Green = 20, Purple = 30, Yellow = 50. Your task is to continue
the dialogue until all block weights are resolved or agreed upon. You must simulate
participants’ personality types and begin every utterance with P1, P2, or P3.

IMPORTANT: Within the dialogue, you should ONLY respond as P1, P2, and P3.
When a Friction Agent statement is provided, respond to it appropriately within the
dialogue. At the END of your response, analyze the conversation and generate a friction
point inside <friction>...</friction> tags. This friction should identify potential issues
or contradictions in reasoning. Detect and mark friction points as instructed.

User: Given the ongoing dialogue, generate the next 2–3 turns while maintaining
character roles and responding to the Friction Agent when applicable. If a friction
statement is present, incorporate it into reasoning; if irrelevant, acknowledge and move
forward. Always score the Friction Agent’s most recent statement on a scale of 1–10
using <score>X</score>. Additionally, track resolved blocks and append them using
<resolved_blocks>...</resolved_blocks>. If a friction point naturally arises, insert
<friction_detected> and provide a reasoning analysis inside <friction>...</friction>
tags.

Tracking Resolved Blocks: - As soon as a block’s weight is confirmed, list it using
<resolved_blocks> Red, Green </resolved_blocks>. - Mark a block as resolved if: * Its
exact weight is stated. * There is no further debate or doubt. * It is logically inferred and
uncontested. * If minor uncertainty remains, still mark it as resolved but continue reasoning.
* Once a block is marked, retain it in the list.

Few-Shot Example: {few-shot example}
Current Dialogue: {dialogue}

Figure 8: Collaborator Agent (πC) Continuation Prompt for continuing the roleplay in the Weights Task (Khe-
bour et al., 2024b) from N = 1 to N = 15 turns. Note that for N=1, we use an identical prompt with the addition
of an example dialogue from original WTD to ground the task (omitted due to space constraints).
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GPT EVALUATION PROMPT: GAME OF WEIGHTS

Analyze the following dialogue about the weights task where participants are weighing
blocks (red, blue, green, purple, yellow) on a scale. Only the red block’s weight (10g) is
initially known. Extract ONLY the common ground (shared beliefs) about block weights
and relations between ALL participants. IMPORTANT: Extract common ground from
participants only; Represent this as a dictionary with three categories:

• "equality": Relations where blocks equal each other or a specific weight
• "inequality": Relations where blocks are explicitly NOT equal
• "order": Relations where one block is heavier (>) or lighter (<) than another

Examples:
• Some Common Ground:

{
"equality": {"red": ["blue", "10g"], "blue": ["red", "10g"]},
"inequality": {"red": ["green"], "blue": ["green"]},
"order": {"green": {">": ["red", "blue", "10g"],
"<": ["purple"]}}

}

• No Common Ground:

{"equality": {}, "inequality": {}, "order": {}}

• Partial Common Ground:

{"equality": {"red": ["10g"]}, "inequality": {}, "order": {}}

IMPORTANT:
• Only include propositions that ALL participants explicitly state or clearly agree on.
• Do NOT infer agreement — only count explicit or acknowledged beliefs.
• Use empty dictionaries for missing categories: "equality": {}.
• Disagreements, uncertainty, or unsupported proposals must be excluded.

Dialogue: Few-Shot Example: {few-shot example}
Current Dialogue: {dialogue}

Figure 9: Evaluation prompt for GPT-4o in WTD (used for both our counterfactual NCCG evaluation in
Figure 1 and reported metrics in Table 1) used to extract the common ground (CG) over three relation
categories: equality, inequality and order for each turn. Note that GPT-4o is explicitly instructed to only consider
relations agreed to by all participants. To reduce any possible bias, we do not provide the ground truth weights
for this extraction, although ground-truth alignment is computed in the adjusted-accuracy metric in Table 1.
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D Experimental Settings

D.1 Training Hyperparameters

We initialize all preference-alignment baselines—DPO (Rafailov et al., 2024b), IPO (Azar et al.,
2024), and PPO (Schulman et al., 2017a)—from supervised fine-tuned (SFT) models trained on the
preferred (winning) friction interventions ( fw) after our preference data generation pipeline that led
to Dpref (see section 3.3 and algorithm 1). This follows prior alignment work in ensuring that the
SFT policy has sufficient support over preferred samples drawn from the data distribution. For the
multi-turn supervised baseline BC-expert, we use Dtraj, the NLL loss is computed only on preferred
friction interventions ( fw), similar to training only on responses on Stargate (Andukuri et al., 2024)
but we condition on the entire trajectory, including frictive states ϕ, for each dialogue and do not
apply any KL-based regularization.

The SFT models are initialized from the meta-llama/Meta-Llama-3-8B-Instruct base checkpoint
to benefit from strong instruction-following capabilities and conversational fluency (AI@Meta,
2024). To mitigate compute demands, we employ Low-Rank Adaptation (LoRA) with α = 16,
dropout = 0.05, and rank R = 8, using the PEFT6 and SFTTrainer7 implementations from the TRL
library. Models are loaded using 4-bit quantization via the bitsandbytes library8 to support more
efficient training. In light of the setup described in Sec. 4, we apply loss only over completions
(i.e., frictive states ϕ and interventions fw) using the ConstantLengthDataset format. We optimize
using AdamW (Loshchilov et al., 2017; Dettmers et al., 2024) with a cosine learning rate scheduler,
weight decay of 0.05, and 100 warm-up steps. We train the SFT models for 6000 steps, using a
learning rate of 1e−4 and an effective batch size of 16 (with gradient accumulation steps = 4). We
use a max_length of 4096 tokens to capture enough context. For BC-expert, we use full trajectories
collected inDtraj with same settings as SFT, except we increase max_length to 6096 tokens to provide
the model with sufficient context for coherent generation.

Contrastive preference baselines

For both DPO and IPO, we apply comparable LoRA configurations, using a max_length of 4096
tokens (covering both prompts and responses) and a max_prompt_length of 2048 tokens. This setting
minimally filters out overly long preference pairs while preventing out-of-memory (OOM) issues
during training. We train these models for 3000 total steps with an effective batch size of 32 and a
learning rate of 5× 10−7, consistent with standard practice (Meng et al., 2024). For IPO (Azar et al.,
2024) specifically, we normalize the log-probabilities of the preferred and dispreferred responses by
their respective token lengths. For both baselines, we found β = 0.1 to be optimal during model
validation. Therefore, we use these β values for our final results.

PPO baseline

For PPO (Schulman et al., 2017b), we train the OPT-1.3B reward model (RM) on Dpref using a
standard Bradley-Terry loss formulation (Bradley & Terry, 1952), following prior work (Hong et al.,
2024), with the TRL reward modeling library.9 Due to higher computational demands, PPO policy
training is conducted with an effective batch size of 8 (mini-batch size 4, gradient accumulation
of 2), for 6000 batches across two epochs. We constrain response lengths to 180–256 tokens using
a LengthSampler, while truncating queries to 1024 tokens. Learning rates are set to 3× 10−6 for

6https://huggingface.co/docs/peft/index
7https://huggingface.co/docs/trl/en/sft_trainer
8https://huggingface.co/docs/transformers/main/en/quantization/bitsandbytes
9https://github.com/huggingface/trl/blob/main/trl/trainer/reward_trainer.py
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DeliData and 1.41× 10−6 for Weights task. During online training, we use a top-p sampling value
of 1.0 for diverse generation.

Training FRICTION++ AGENT We train FRICTION++ AGENT models using a batch size of 16
and adopt the same PEFT/LoRA (Houlsby et al., 2019) configuration discussed above, with a
slightly reduced learning rate of 5e−7 to account for smaller batch sizes. To improve efficiency,
both the ϕ-conditioned implicit rewards and the ϕ-unconditioned implicit rewards in Eq. 2 are
computed jointly during a single forward pass, to account for the slightly longer frictive states
(tokens) compared to the friction interventions. Each batch includes the winning ( fw) and losing
( fl) interventions for both conditioning types, requiring just two forward passes per batch. This
setup is implemented using a customized version of the DPO Trainer from TRL10, modified to
support dual policy outputs. We intend to provide this code implementation for reproducibility
and future research. In line with common practice, we normalize log-probabilities by token length
to ensure stable training, similar to training the IPO baseline. We perform a hyperparameter sweep
over KL-regularization strengths β ∈ {10, 5, 1, 0.1, 0.01}, and found β = 0.1 consistently yields the
best trade-off during model validation. Consequently, we use β = 0.1 for all FRICTION++ AGENT
experiments reported in our results.

Training and Inference Hardware All models requiring an in-memory reference model were
trained using two NVIDIA A100 GPUs. In contrast, the OPT-1.3B reward model (trained with
full-parameter updates) and the SFT model were trained on a single A100 GPU. Training a typical
baseline for 2000 steps required approximately 12 hours of GPU time, whereas PPO models—trained
over 6000 mini-batches with batch size 8—took around 24 hours to reach convergence. Running the
roleplay loop for our counterfactual reward and common ground evaluation took roughly 6 (3.5)
hours for DeliData and Weights task respectively, for each baseline.

D.2 Training Data Generation

We use the 400 bootstrap dialogues from the training set of DeliData (Karadzhov et al., 2023) for
training to collect Dtraj and Dpref. This process resulted in 6000 preference pairs (15 turns for each
dialogue), after which we applied a rule-based mapping to further augment the training data to
Ultrafeedback scale (AllenAI, 2024). In particular, we applied a consistent category-preserving
mapping where vowels11 v ∈ {A, E, O, U} were replaced with randomly sampled vowels, even
numbers with other even numbers, and odd numbers with other odd numbers. This maintains the
logical structure of the Wason Card Task—if "A" and "6" are replaced with "E" and "8", the under-
lying reasoning remains valid. Applying this mapping to all components (x, ϕ, fw, fl) expanded
our dataset to 68,618 preference pairs. The average scores12 (out of 1-10) for the preferred and
dispreferred interventions assigned by GPT-4o are 8.03 and 3.96 respectively.

For Weights task (WTD) (Khebour et al., 2024b), since the original data is textually sparse and
has very few naturally occurring friction interventions, we use our data-generation pipeline (al-
gorithm 1) for creating training data for our experiments. Specifically, to reflect the scale of
Ultrafeedback (AllenAI, 2024), a total of 3,375 combinations of personality-facets (3*5 unique com-
binations for each participant in a triad) were used to bootstrap this process along with original
WTD task-guidelines. As such, we obtained a total of 56,689 preference pairs for training after

10https://huggingface.co/docs/trl/main/en/dpo_trainer
11We did not replace consonants since the nature of the Wason card ensures that vowels are more prevalent

in the original DeliData
12Note that these scores are reported from post step 12 and 13 in algorithm 1 since these average scores are

from the phase before the mapping based augmentation.
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holding out 50 dialogues (approximately 750 single-turn preference pairs) for validation sets 13. On
average, preferred interventions received scores (on a Likert scale of 1-10) (See fig. 8 for prompt)
of 8.48± 1.52 on the training set and 8.51± 1.50 on the test set, while dispreferred interventions
scored 6.01± 0.88 (train) and 6.08± 0.87 (test), indicating a stable preference gap across both splits.

Figure 10: Token-length distribution of the friction interventions and collaborator responses on DeliData (top)
and Weights task (bottom) averaged across baselines from our counterfactual roleplay evaluation process.
While GPT-4o’s responses show an almost normal distribution, responses from FRICTIONS AGENT show more
variation.

Fig. 10 shows token length distribution of friction interventions and collaborator responses averaged
across baselines from our counterfactual roleplay evaluation process. Friction agents consistently
produce concise interventions (mean 58.4 tokens in DELI, 70.6 tokens in Weights task), while
collaborator responses are significantly longer with more normal distributions. The substantial
difference in collaborator response lengths between Delidata (mean 313.2 tokens) and Weights
task (mean 166.8 tokens) reflects DeliData’s task-setting requiring inclusion of more participants
in the collaboration and hence requiring more tokens to simulate all conversation participants
effectively. We also computed textual-diversity (Self-BLEU) (Zhu et al., 2018) of collaborator and
friction baselines from this roleplay evaluation run. Specifically, the GPT average Self-BLEU score
of 0.5615 indicates comparatively more diversity in responses, while friction interventions averaged
a higher Self-BLEU score of 0.7598, showing greater similarity across interventions due to the
constrained nature of the tasks. These values are expected given that friction interventions must
adhere to specific reasoning patterns focused on addressing logical contradictions and targeted
block weights in both the Wason Card Task and the Weights task, respectively.

E Example Friction Interventions

Table 4 shows an illustrative example of a friction agent successfully helping the collaborator resolve
the Wason card selection task in the Delidata evaluation set of tasks. The friction intervention
received a maximum effectiveness score of 10, indicating optimal impact on the collaborative

13Note that all our evaluation in our reported experiments use only the bootstrap dialogues from these 50
dialogues of WTD, due to the nature of collaborative task which requires multiturn processes.
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decision-making process. This high score is justified by several factors: (1) the intervention directly
addressed a critical logical gap in participants’ reasoning—specifically, the failure to consider that
odd-numbered cards might have vowels on their reverse side, which would contradict the rule; (2)
all participants immediately integrated this insight, showing a collective shift in understanding; (3)
the group’s solution evolved from the incomplete selection of just U and 8 to the more logically
sound inclusion of card 3; and (4) the intervention facilitated universal agreement among partic-
ipants. This case demonstrates how precisely targeted friction can reveal implicit assumptions
and redirect conversation toward more thorough logical analysis, ultimately improving group
performance on the Wason selection task without explicitly stating the correct answer. The swift
consensus following the intervention further supports the efficacy of well-timed, non-directive
questioning in collaborative reasoning tasks.
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Field Content

Dialogue History (x) SYSTEM: Zebra, Leopard, SYSTEM, Giraffe, Narwhal 3, U, 8, V
Giraffe: We just select 8 and U, right?
Zebra: Yes, I think that is right.
Zebra: U, 8.
Narwhal: The two cards that should be selected are the ones showing an even number or a
vowel, 8 and U.
Leopard: 8 and U.
Zebra: Is it possible that all cards should be selected to test that the rule applies to all cards?
Giraffe: No idea.
Giraffe: I guess that makes sense though.
Giraffe: To verify that consonants and odd numbers don’t break the rule...
Narwhal: We need to test 3 also.
Giraffe: Whoops, not consonants.
Giraffe: Yeah, 3.
Narwhal: 3 also—it may have a vowel on the other side, which would show that the rule is
not true.
Leopard: So do we submit our final decision now?
Zebra: If we turn only two and they are correct, what about the other two? Why not
consonants? It says a letter.
Leopard: I pick 8, 3, and U.
Leopard: Okay, thanks.
Narwhal: 8, 3, U is correct.
Narwhal: 3, U, 8.
Zebra: 3, U, 8.
Narwhal: Everyone needs to click on 8, 3, U and hit "revise solution."

Frictive State (ϕ) The participants assume that the rule "All cards with vowels have an even number on the
other side" only applies to the two selected cards, U and 8.

Rationale The group needs to consider that odd-numbered cards could have vowels as well, which
would contradict the rule.

Preferred Friction ( fw) Can we clarify if the rule only applies to vowels, or if odd numbers also matter?

Collaborator Responses Zebra: Okay, let’s take a step back. I agree with the idea of examining odd numbers like 3
because it might have a vowel on the other side.
Giraffe: Right, right. We do need to consider if an odd number has a vowel. Otherwise, it
contradicts the rule.
Narwhal: Yes, exactly! We have to check 3 too because it could surprise us by having a
vowel.
Leopard: Alright, I see what everyone’s saying. Let’s make sure we check 3 along with U
and 8 to cover all the bases.
Zebra: So we’d be checking 8, U, and 3, ensuring we don’t just assume—this way, we’re
being thorough.

Common Ground U (select), 8 (select), 3 (select)

Solution Mapping EOV (Even, Odd, Vowel)

Friction Score 10/10

Table 4: A dialogue example from DeliData dataset showing a collaborative Wason card selection task. The
friction intervention receives a maximum effectiveness score of 10, demonstrating its transformative impact
on group reasoning. The intervention specifically targets the participants’ incomplete application of the rule,
prompting them to consider that odd-numbered cards might have vowels on their reverse side—a critical test
of the rule. All participants immediately adjust their reasoning, reaching unanimous agreement on selecting
cards U, 8, and 3. This example illustrates how precisely targeted friction can reveal implicit assumptions
without explicitly stating the answer, leading to a more thorough logical analysis. The swift consensus
following the intervention highlights the efficacy of well-timed questioning in collaborative reasoning tasks.
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