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Abstract

Retrieval augmented Question Answering (QA) helps QA models over-
come knowledge gaps by incorporating retrieved evidence, typically a set
of passages, alongside the question at test time. Previous studies show that
this approach improves QA performance and reduces hallucinations, with-
out, however, assessing whether the retrieved passages are indeed useful at
answering correctly. In this work, we propose to quantify the uncertainty
of a QA model via estimating the utility of the passages it is provided with.
We train a lightweight neural model to predict passage utility for a target
QA model and show that while simple information theoretic metrics can
predict answer correctness up to a certain extent, our approach efficiently
approximates or outperforms more expensive sampling-based methods.1

1 Introduction

Retrieval augmented Question Answering (QA) allows QA models to overcome knowledge
gaps at test time through access to evidence in the form of retrieved passages (Lewis et al.,
2020; Guu et al., 2020; Izacard et al., 2024). Recent work leverages external retrievers
(Chen et al., 2017; Izacard & Grave, 2021) and the language understanding and generation
capabilities of Large Language Models (LLMs; Brown et al. 2020; Ouyang et al. 2024) to
predict answers based on questions and retrieved passages which are provided as input
context. In Figure 1, we show an example of a question (Who sings Does He Love Me with
Reba? ), retrieved passages, and predicted answers.

Retrieval augmented QA architectures have proven beneficial in increasing LLM perfor-
mance on tail knowledge (Izacard et al., 2024; Mallen et al., 2023), reducing hallucinations
in the generated answers (Shuster et al., 2021), and even improving model calibration (Jiang
et al., 2021). However, there are various ways in which retrieval augmented QA can go
wrong. The set of retrieved passages is far from perfect (Sciavolino et al., 2021; Yoran et al.,
2024; Kasai et al., 2024) containing irrelevant, incomplete, or misleading evidence, the model
might be under-trained to read certain passages and reason over these and the question
(Izacard et al., 2024; Liu et al., 2024b; Sun et al., 2025), and the question can be ambiguous
or unanswerable (Kasai et al., 2024). Ultimately, QA models may not follow the provided
passages (Xie et al., 2024; Joren et al., 2025). When faced with uncertainty, QA models should
ideally acknowledge it (e.g., by communicating it) rather than risk an incorrect response.

A good deal of previous work has focused on quantifying answer uncertainty in the context
of closed-book QA tasks, where the answer is predicted based on a question and the model’s
encoded knowledge. Sampling-based methods rely on output discrepancies among multiple
predictors of the same input (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017). They
measure diversity on a set of answers (Kuhn et al., 2023; Chen & Mueller, 2024) sampled via
temperature scaling (Guo et al., 2017), with larger variance indicating higher uncertainty.
LLM-based methods rely on the QA model’s own judgment of uncertainty (Kadavath et al.,

1Code and data are available at https://github.com/lauhaide/ragu
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Who sings does he love me with Reba?

Linda Davis

Does He Love You. Does He Love You ”Does He Love You” is a song written by Sandy Knox and Billy
Stritch, and recorded as a duet by American country music artists Reba McEntire and Linda Davis. It
was released in August 1993 as the first single from Reba’s album ”Greatest Hits Volume Two”. It is one
of country music’s several songs [cont.] 2.77

Patti LaBelle

Does He Love You. on Patti LaBelle’s album, F̈lamë. The song features a vocal battle between two female
narrators who are in love with the same man. Both women know that the man is being unfaithful to them
and are wondering who he truly loves. The big-budget, Jon Small-directed video was filmed over 3 days
in mid-1993. It begins with Reba in her dressing room wearing a lilac feather gown, where she sees a
picture of her lover, which she glances at. [cont.] -0.10

Figure 1: Example question from Natural Questions dataset (Kwiatkowski et al., 2019) with
two top-retrieved passages using Contriever-MSMARCO (Izacard et al., 2022). On top of
each passage, we show the answer generated by GEMMA2-9B when prompted with that
passage and the question. The QA model answers correctly (green) only when prompted
with the first passage. Numbers at the bottom right of each passage are utility scores
predicted by our model (higher values indicate more useful passages).

2022; Lin et al., 2022; Tian et al., 2023). Through prompting, the model is encouraged to
express its uncertainty (e.g., 0.5 or ‘almost certain’), either alongside the predicted answer
(Lin et al., 2022; Tian et al., 2023) or after generating it (Kadavath et al., 2022; Tian et al.,
2023). None of these approaches has been applied in the context of retrieval augmented QA
(Shorinwa et al., 2025).

In this paper, we focus on answer uncertainty estimation in the context of retrieval aug-
mented QA. We hypothesize that a passage is useful, if a model can correctly answer
questions based on it. If passages are informative and prime the QA model towards ap-
propriate knowledge Geva et al. (2021), we expect it to produce a correct answer. On the
contrary, if passages are irrelevant or misleading and the question falls outside the QA
model’s knowledge, it is likely to produce an incorrect answer, either factually inaccurate or
entirely fabricated. Importantly, this notion of utility is based on how the target QA model
will answer with the provided passages and not on what an external judge (e.g., entailment
model) thinks about them. We quantify the utility of a retrieved passage with a small
neural model trained on utility judgments obtained by observing the target QA model’s
answering behavior. We borrow ideas from direct uncertainty quantification approaches
(Van Amersfoort et al., 2020; Lahlou et al., 2023) but do not decompose uncertainty or outline
shifts in the input distribution. We make utility predictions for each retrieved passage which
we then use to estimate the uncertainty of the QA model when prompted with a set thereof.

We evaluate our approach on short-form information-seeking QA tasks (Rodriguez & Boyd-
Graber, 2021) (see Figure 1 for an example). Results on six datasets show that our uncertainty
estimator is comparable or outperforms existing sampling-based methods while being more
test-time efficient. Sampling-based solutions are expensive for in-production QA systems,
in terms of latency and cost (e.g., QA engines built on top of proprietary language models
would need to process relatively long prompts). Moreover, our experiments reveal that
variation is less prominent in model answers in the context of retrieval augmented QA
(e.g., the QA model is more confident on incorrect answers supported by retrieved passages
in the prompt). Our contributions can be summarized as follows:

• We quantify QA model uncertainty via estimating the utility of the passages it is
provided with.

• We (contrastively) train a small neural model on utility scores obtained through
combining accuracy (is the generated answer correct?) and entailment (is the
generated answer supported by the passage?) metrics.
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• Our approach is lightweight, improves upon more expensive sampling-based meth-
ods, and is not tied to the retriever (and passages) used to prompt the QA model.

2 Related Work

Uncertainty Quantification for Question Answering Several methods have been pro-
posed to predict answer uncertainty in the context of closed-book QA; however, none of
them has analysed uncertainty in retrieval augmented QA models. Many of these meth-
ods rely on the assumption that variation in the model’s output is an expression of its
uncertainty (Kuhn et al., 2023; Farquhar et al., 2024; Chen & Mueller, 2024). For example,
some approaches (Kuhn et al., 2023; Farquhar et al., 2024) first cluster answers with similar
meaning (in a sample) via Natural Language Inference (NLI) before computing entropy
while other work (Chen & Mueller, 2024) focuses on black-box models; they also compute
similarities in the set of answers but associate them with the model’s self-judgement of
confidence. In a recent study, Soudani et al. (2025) show that, in the context of retrieval
augmented QA, these methods tend to exhibit overconfidence and sensitivity to the input
context. Indeed, our experiments corroborate their analysis. We find that sampling-based
methods exhibit less variation in a retrieval setting, and do not offer a significant advantage
over methods such as perplexity or LLM prompting for self-assessment (Kadavath et al.,
2022), unlike in closed-book settings.

Sequence entropy methods (Kuhn et al., 2023; Farquhar et al., 2024) focus on detecting
incorrect answers stemming from arbitrary fluctuations in model outputs (referred to as
confabulations). Our approach extends to additional error sources, including incorrect
training data or misleading evidence. Hou et al. (2024) focus on quantifying aleatoric
uncertainty (i.e., uncertainty in the data) caused by ambiguous questions, an approach
that could be combined with ours. Sampling-based methods are expensive to run at
inference time for a production QA system; they require several inference steps in addition
to performing similarity computations, which can become more complex with longer
answers (Zhang et al., 2024b). In contrast, our approach is light-weight at inference time,
but requires training data with observations pertaining to the accuracy of the target model.
Our approach optionally uses an NLI model at training time, depending on the chosen
objective. In Section 6, we further summarise key differences between our approach and
existing uncertainty estimation methods in the context of retrieval augmented QA.

Judging the Quality of Retrieved Passages Previous work has analysed the quality of
retrieved passages (Yu et al., 2023; Asai et al., 2024; Wang et al., 2024; Xu et al., 2024; Yoran
et al., 2024) as they can be irrelevant or misleading. Asai et al. (2024) make use of an external
critic model to create training data exemplifying cases where a question requires retrieval
(or not) and, in the case that retrieval is needed, whether retrieved passages contain the
information (or not) to formulate the answer. Note that the usefulness judgment is made
by an external critic. Then, a QA model (i.e., the Self-RAG model) is trained on this data
to learn to reflect by itself whether passages are supportive and relevant and to predict
special tokens indicating this. While it is possible to derive uncertainty from those special
tokens’ probabilities, they only reflect Self-RAG’s uncertainty state. Our proposal is more
general and aims at predicting answer uncertainty in zero-shot QA models (e.g., instruction
fine-tuned LLMs). Thus, using Self-RAG special tokens would be like using an off-the-shelf
sophisticated classifier (i.e., a specialized textual entailment) to predict the uncertainty of a
zero-shot QA model (Yoran et al., 2024). In contrast, we predict uncertainty by observing
the errors of the target QA model (in a zero-shot setting). Other work creates auxiliary
tasks around retrieved passages enforcing the QA model to reason on them; e.g., by taking
notes about each passage (Yu et al., 2023) or generating passage summaries (Xu et al., 2024).
These methods also use extreme-scale LLMs to generate training data for fine-tuning a
retrieval augmented QA model. Park et al. (2024) select low and high quality in-context
examples in order to instruct the LLM to reason on input passages. Concurrent work by
Joren et al. (2025) defines the concept of context sufficiency, i.e., whether the content in the
set of retrieved passages is sufficient to answer the question and uses an external judge to
assess this. However, the external judgment might not agree with the answering behavior of
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the target QA model (i.e., the judge may indicate that the context is sufficient but the model
may still incorrectly answer). All these approaches aim at improving QA performance while
our primary goal is modeling QA uncertainty.

Using a Separate Model to Predict Confidence Our passage utility predictor is related to
methods aiming to estimate error directly (Lahlou et al., 2023), e.g., by training a secondary
model to estimate target model loss; instead, our predictor is trained with sequence-level
metrics, i.e., accuracy and entailment, which measure error indirectly. Some work (Kamath
et al., 2020; Zhang et al., 2021) predicts answer correctness in the context of Reading Compre-
hension (the task of generating an answer based on a single supportive passage). However,
as there is no retrieval involved, the input passage is by default useful, and the main goal
is to detect answer uncertainty due to the QA model being under-trained. In our setting,
the number and quality of passages varies leading to additional sources of uncertainty
(e.g., misleading information). Some approaches train a specific model to predict answer
confidence scores (Dong et al., 2018; Kamath et al., 2020; Zhang et al., 2021; Mielke et al.,
2022) by incorporating various features from the input and model output. Our approach
predicts answer uncertainty directly from individual passage utilities and its predictions
could also be combined with other features (e.g., output sequence probability).

3 Modeling Answer Uncertainty

We formally define retrieval augmented QA as follows. Given question x and a set of
retrieved passages R = {p1, p2, · · · , p|R|} obtained with retriever R, an LLM-based QA
modelM is prompted to generate answer y to question x token-by-token according to its
predictive distribution:

P(y|x, R;M) =
|y|

∏
t=1

P(yt|y1..t−1, x, R;M). (1)

We wish to estimate M’s uncertainty (i.e., chance of error) of generating y given x and R.

When a retrieved passage is useful to answer a given question (such as the first passage in
Figure 1 for the question Who sings Does He Love Me with Reba? ), the QA model is likely
to be confident when generating the answer (Linda Davis). When the passage is not useful
(such as the second passage in Figure 1), the QA model is likely to be uncertain and provide
an incorrect answer (Patti LaBelle). Our hypothesis is that the utility of each passage p in R
is indicative of the QA model’s uncertainty in generating y, when prompted with R. If there
are passages in R with high utility (e.g., in Figure 1, the first passage is useful to answer the
question), it is likely that the QA model will be confident when generating answer y. In
contrast, if all passages in R have low utility, it is likely that the QA model will be uncertain
when generating the answer.

The core of our approach is estimating the utility υM of individual passages for a tar-
get QA model M. Specifically, we develop an estimator {x, p} 7→ υM({x, p}) for each
passage p ∈ R (Section 3.1). We then leverage the predicted passage utility υM to es-
timate M’s uncertainty when generating answer y to question x based on evidence R,
{x, R} 7→ uM({x, R}) (Section 3.2).

3.1 Passage Utility Prediction

Intuitively, a retrieved passage p is useful for a QA modelM ifM can correctly answer
question x when prompted with p. However, the model’s dependence on p may vary. In
some cases, M may generate the correct answer even if p does not explicitly contain it,
instead it positively primes the model to draw upon its memorized knowledge. In Figure 1,
the first passage has high utility because the QA model generates a correct answer when
prompted with it, and explicitly states that “Linda Davis sings alongside Reba McEntire”.
In contrast, the second passage, while related to the question’s topic, is not useful. The QA
model struggles to answer correctly when prompted with it, suggesting uncertainty. Since
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this passage does not provide helpful information and leads to incorrect answers, its utility
is low.

We estimate the utility of passage p in answering question x for QA modelM by combining
two key measures, accuracy and entailment:

υM =
(a(y) + e(y))

2
(2)

Accuracy, denoted as a(y), indicates whether the generated answer y is correct, while
entailment, denoted as e(y), measures the degree to which p supports y. Accuracy is
determined by an evaluator A, and entailment is assessed using an NLI model E. The
combined passage utility υM ranges between 0 and 1, given that a takes values in {0, 1}
and e falls within the [0, 1] interval. The intuition behind this composite term vM is to
encourage a ranking of passages that spans a broad spectrum: from highly useful ones
(producing correct answers with strong entailment), through more ambiguous cases (e.g.,
correct answers with weak entailment or incorrect answers with strong entailment), to
clearly unhelpful passages (producing incorrect answers with weak entailment).2

We train a lightweight neural model on dataset DM = {(x, p, υM)} to predict passage utility
scores, {x, p} 7→ υM({x, p}), We construct D by pairing input questions x and passages p
with utility scores υM which we obtain after runningM on examples (x, p) and computing
observed answer accuracy and entailment scores from the QA model M. We retrieve
|R| > 1 passages per question to ensure a diverse range of usefulness and create training
instances {(x, pi, υi) | pi ∈ R} under modelM. We leverage this data to train the passage
utility predictor with a contrastive learning scheme. Specifically, if two passages pi and pj
belong to R and pi is more useful than pj for answering question x, the predicted utility
score υi should be higher than υj by margin m, ensuring that pi is ranked above pj. We train
the utility predictor with the following ranking objective:

Lrank = ∑
((x,pi),(x,pj))∈R×R,i 6=j

max(0,−z(υi − υj) + m)), (3)

where z controls the gold order between pi and pj (e.g., if z = 1, pi has higher utility, and
conversely z = −1 indicates the opposite ordering) and m is a hyper-parameter.

We train the passage utility predictor with a Siamese neural network consisting of a BERT-
based encoder (Devlin et al., 2019) followed by pooling and two MLP layers stacked on
top of BERT outputs (Fang et al., 2024). The output layer computes the utility score as
υi = WohL + bo where hL is the vector representation for (x, pi) from the last hidden layer
(the L-th layer) of the network. At inference time, we compute a single utility score for each
passage. We provide implementation and training details in Section 4.

To strengthen the role of accuracy prediction as a training signal and regularize the range
of utility values learned by the ranking scheme, we combine the ranking objective in
Equation (3) with the following Binary Cross Entropy (BCE; Sculley 2010) objective:

LBCE = ∑
((x,pi),(x,pj))∈R×R,i 6=j

[a× log(p(x, pi)) + (1− a)× log(1− p(x, pi))]

+[a× log(p(x, pj)) + (1− a)× log(1− p(x, pj))],
(4)

where p(x, pi) = sigmoid(υi) and a is the target accuracy label a(y) under modelM taking
values in the set {0, 1}. We train the utility predictor with the following combined objective
where λ is a hyper-parameter to adjust the LBCE penalty:

L = Lrank + λLBCE. (5)

2Note that for the pairwise ranking loss, using the sum υM = a(y) + e(y) would be equivalent. In
Appendix A, we include ablation experiments with different implementations of the Passage Utility
score υM.
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Both ranking and BCE objectives are compatible with gold annotations that could be
provided in active learning or interactive settings (Simpson et al., 2020; Fang et al., 2024).
For example, moderators of the QA system would provide judgments on the accuracy of
the answers it predicts (e.g., correct/incorrect ) and the extent to which these are supported
by the retrieved passages (e.g., not supported to fully supported).

3.2 Answer Uncertainty Estimation

For our QA task, we want to define an estimator {x, R} 7→ uM({x, R}) which quantifies
the uncertainty of modelM when generating answer y for question x based on a prompt
with passages R. We propose estimating uM directly from the utility scores of individual
passages in R. The key intuition is that the higher the utility of one (or more) passages, the
less uncertainM will be when generating answer y. Conversely, if all passage utilities in R
are low, it is more likely thatMwill be uncertain about the answer. Specifically, we estimate
answer uncertainty uM by taking the maximum utility score among the passages in R:

uM({x, R}) = max(υM({x, p}) | p ∈ R). (6)

Our approach to aggregating passage utilities is intuitive and simple. However, QA models
might be sensitive to factors relating to how they are prompted, such as the number or order
of passages (Liu et al., 2024b; Xie et al., 2024). In Appendix C, we examine such confounds
more closely, comparing question answering accuracy when models are prompted with
individual passages in R (our aggregation approach) versus the entire set R. The study
shows that there is little disagreement between the two methods and that it is possible to
approximate answer uncertainty when prompting with |R| passages while avoiding the
combinatorial complexity of estimating uncertainty over all possible combinations of input
passages.

4 Experimental Setup

4.1 QA Tasks and Models

We evaluate our approach to predicting answer uncertainty on short-form question answer-
ing tasks. Specifically, on the following six datasets: Natural Questions (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017), WebQuestions (Berant et al., 2013), SQuAD (Rajpurkar
et al., 2016), and PopQA (Mallen et al., 2023). We also evaluate on RefuNQ (Liu et al., 2024a),
a dataset with unanswerable questions about non-existing entities. In Appendix F.1, we
describe each dataset, provide example questions, and make available details about the
splits used in our experiments which follow Lee et al. (2019).

We consider backbone instruction fine-tuned LLMs from different families of similar size.
These are Llama-3.1-8B-Instruct (AI@Meta, 2024), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023),
and Gemma2-9B-it (Riviere et al., 2024). We also assess answer uncertainty quantification
performance on QA models of the same family but with different sizes. To this end, we
additionally evaluate on Gemma2-27B-it. For all QA models, we use a simple prompt
including the retrieved passages and the question in the context; the prompt is shown in
Table 14 in the Appendix. The QA models’ answer is the most likely answer generated
with greedy sampling at temperature equal to 0. Following previous work on retrieval
augmented QA, we use Contriever-MSMARCO (Izacard et al., 2022) as our external retriever
(Asai et al., 2024) and the target QA models are prompted with |R| = 5 passages (Yu et al.,
2023; Asai et al., 2024; Xu et al., 2024). In Appendix F.2, we provide more details about
inference and passage retrieval.

4.2 Evaluation

QA Accuracy A precise metric for measuring accuracy is key when evaluating the quality
of uncertainty estimation. Token overlap metrics are imprecise and can over- or under-
estimate accuracy (e.g., 5 will not match five). Thus, we rely on a LLM-based accuracy
evaluator to create training data for the Passage Utility predictor (i.e., A in Section 3.1) and
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to evaluate retrieval augmented QA performance. We use Qwen2-72B-Instruct (Yang et al.,
2024) and the prompt proposed by Sun et al. (2024) to obtain accuracy judgments. Details
about the LLM evaluator can be found in Appendix F.2.

Uncertainty Estimation To assess the quality of answer uncertainty prediction, we follow
Farquhar et al. (2024) and report the Area Under the Receiver Operator Curve (AUROC) on
detecting incorrect answers (i.e., answers with high uncertainty). In Appendix G.3, we also
report the area under the rejection accuracy curve (AURAC) which captures the accuracy
a model would have if it refused to answer questions with highest uncertainty. Rejection
accuracy is essentially the model’s accuracy on the remaining questions. In the main results
section, we focus on selective answering performance when models answer 80% of the least
uncertain questions versus when always answering. We provide implementation details in
Appendix F.2.

4.3 Methods

Passage Utility Predictor We train a Passage Utility predictor per QA model and QA task.
For each task, we curate dataset DM = {(x, p, υM)} to train and evaluate a Passage Utility
predictor for QA modelM. We use the training (and development) questions available for
each QA task, considering the top five retrieved passages for each question (i.e., |R| = 5).
Note that |R| is a hyper-parameter and other values would be also possible. Larger sizes of
|R| would yield more training data, since the Utility predictor takes individual passages
(together with the question) as input. The target QA model M is first prompted with
passage p ∈ R and question x to generate answer y. Then, we annotate passages p with a
utility score computed with the accuracy evaluator A and entailment judge E on generated
answer y (Section 3.1). We use an ALBERT-xlarge model (Lan et al., 2020) optimized on
MNLI (Williams et al., 2018) and the VitaminC dataset (Schuster et al., 2021). We provide
more details about the curated datasets and training of the Passage Utility predictor training
in Appendix F.2.

Comparison Approaches and Baselines There exist several uncertainty estimation meth-
ods which we group in two categories based on whether they require access to logits or
simply model outputs (see Fadeeva et al. 2023 for additional methods). We choose the
highest scoring ones to compare with here and include additional results in Appendix G.3
for completeness.

Information-Theoretic Measures. We compare against uncertainty estimation methods that
are based on the predictive probabilities of the target QA model. Let y denote an answer
generated with probability p(y|x, R;M) which is computed as:

p(y|x, R;M) =
|y|

∏
t=1

p(yt|y1..t−1, x, R;M) (7)

The Perplexity (PPL) of modelM boils down to calculating token-level entropy as it is based
on the average negative log-likelihood of the generated tokens:

PPL(x, R,M) = exp {− 1
|y|

|y|

∑
t=1

log p(yt|y1..t−1, x, R;M)}, (8)

Regular entropy, on the other hand, is computed over sequences, quantifying the entropy
of the answers. It is defined as E[−log P(Y|x, R;M)] where the expected value, E, is
computed on sequences y sampled from the conditional distribution P(Y|x, R;M), where
random variable Y denotes the answer sequences, and x and R are the input question
and retrieved passages, respectively. In practice, regular entropy is approximated via
Monte-Carlo integration, i.e., sampling N random answers from P(Y|x, R;M):

RE(x, R,M) = − 1
N

N

∑
n=1

log P̃(yn | x, R;M), (9)
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where P̃(yn | x, R;M) is the length normalised version of P(yn|x, R;M).

Kuhn et al. (2023) propose Semantic Entropy, a variant of regular entropy that disregards
uncertainty related to the surface form of the generated answers. The method works by
sampling several possible answers to each question and grouping the set of N samples
into M clusters (with M ≤ N) that have similar meanings (which are determined on the
basis of whether answers in the same cluster entail each other bidirectionally). The average
answer probability within each cluster is:

SE(x, R,M) = −
M

∑
m=1

P̂m(x,M) log P̂m(x,M), (10)

where P̂m(x,M) is estimated as follows:

P̂m(x,M) =
∑y∈Cm P̃(y|x, R;M)

∑M
m=1 ∑y∈Cm P̃(y|x, R;M)

(11)

LLM-based Measures. We compare with p(true) which uses the same LLM-based target QA
model to assess whether the answers it produces are correct (Kadavath et al., 2022). We
follow the p(true) variant used in previous work (Kuhn et al., 2023). The QA model is
prompted with the question and a set of candidate answers (consisting of the most likely
answer and a sample of N answers) and is instructed to respond whether the most likely
answer is true or false (i.e., correct/incorrect). The score produced by this approach is the
probability of modelM generating the token True. This method needs several in-context
examples to work well; following Kuhn et al. (2023), we use 20 in-context examples. Note
that since our backbone LLMs are recent models with a large context (unlike Kuhn et al.
2023), all 20 examples are fed in the context making p(true) an expensive but very strong
approach. In the context of retrieval augmented QA, we modify p(true) to include in the
prompt the set of retrieved passages for the question of interest. We provide the prompt
used by p(true) in Appendix F.3. Note that p(true) can be considered as a specialized
powerful entailment model and thus we do not include entailment based methods relying
on off-the-shelf NLI models which have been shown to perform poorly (Yoran et al., 2024).

For approaches that require sampling, we follow previous work (Farquhar et al., 2024)
and take N = 10 samples, which we generate with multinomial sampling. We set the
sampling temperature to 1, with nucleus sampling (P = 0.9; Holtzman et al. 2020) and
top−K sampling (K = 50; Fan et al. 2018), and use a different random seed to draw each
sample. We provide further details about inference in Appendix F.2 and report inference
costs for each approach in Appendix B.

5 Results and Analysis

Passage Utility is effective across model families, sizes, and QA tasks. Table 1 summa-
rizes our uncertainty estimation results (test set) with four QA models (GEMMA2-9B/27B,
LLAMA-3.1-8B, and MISTRAL-7B-V0.3) across six QA datasets (results on the development
set are included in Appendix G.3). We boldface the highest AUROC value for each QA
model and dataset pair and mark with ∗ the next best value that is significantly different
from it at p < 0.05. We use the paired De Long test (DeLong et al., 1988) to compute whether
two AUROC values are significantly different.3

In general, answer perplexity (PPL) performs rather poorly, especially with GEMMA2-
9B/27B. Perplexity is likely to underperform with less calibrated models, such as those
which have undergone instruction tuning (Tian et al., 2023). Regular Entropy shows little
improvement upon PPL but by ignoring surface form choices and focusing on meaning,
Semantic Entropy improves AUROC scores. p(true) performs well at detecting answer
uncertainty matching or surpassing Semantic Entropy. Overall, we observe that the gap
among these methods’ performance is lower than in the context of closed-book QA studied

3We use the library in https://github.com/Brritany/MLstatkit to compute significance scores.
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GEMMA2-9B GEMMA2-27B
NQ TQA WebQ SQuAD PopQA RefuNQ AVG NQ TQA WebQ SQuAD PopQA RefuNQ AVG

PPL 0.64 0.68 0.52 0.53 0.59 0.51 0.58 0.64 0.50 0.53 0.59 0.58 0.51 0.56
p(true) 0.73 0.75∗ 0.67 0.63 0.81∗ 0.62 0.70 0.77 0.83 0.67 0.68∗ 0.78∗ 0.60∗ 0.72
Regular Entropy 0.66 0.69 0.54 0.56 0.61 0.51 0.60 0.67 0.54 0.55 0.59 0.62 0.51 0.58
Semantic Entropy 0.70 0.73 0.57∗ 0.64∗ 0.73 0.59∗ 0.66 0.69 0.62∗ 0.59∗ 0.63 0.66 0.58 0.63
Passage Utility 0.76 0.85 0.69 0.78 0.86 0.79 0.79 0.73∗ 0.82 0.69 0.80 0.85 0.78 0.78

LLAMA-3.1-8B MISTRAL-7B-V0.3
NQ TQA WebQ SQuAD PopQA RefuNQ AVG NQ TQA WebQ SQuAD PopQA RefuNQ AVG

PPL 0.75 0.80 0.68 0.74 0.83 0.60 0.73 0.63 0.71 0.57 0.65 0.64 0.62 0.64
p(true) 0.79 0.88 0.74 0.77 0.85 0.67∗ 0.78 0.73 0.82 0.68 0.74∗ 0.75∗ 0.68∗ 0.73
Regular Entropy 0.76∗ 0.81 0.71∗ 0.78 0.83∗ 0.65 0.76 0.64 0.75 0.62∗ 0.65 0.66 0.60 0.65
Semantic Entropy 0.72 0.82∗ 0.66 0.78∗ 0.81 0.59 0.73 0.66∗ 0.78∗ 0.66 0.73 0.74 0.61 0.70
Passage Utility 0.77 0.82 0.72 0.83 0.87 0.81 0.80 0.74 0.83 0.68 0.82 0.85 0.80 0.79

Table 1: AUROC values for QA models based on GEMMA2-9B/27B, LLAMA-3.1-8B, and
MISTRAL-7B-V0.3 on Natural Questions (NQ), TriviaQA (TQA), WebQuestions (WebQ),
SQuAD, PopQA, and RefuNQ test sets. The best values (per model and dataset) are
highlighted in bold; we also mark with ∗ next best values which are significantly different
using the paired De Long test (p < 0.05). For example, on TQA with GEMMA2-9B, p(true),
the second best performing is significantly different from the Passage Utility which performs
best and by extension models with lesser values than p(true) are also significantly different.

in previous work (Farquhar et al., 2024). We hypothesize that, on one hand, our recent
QA models admitting more in-context examples benefiting p(true) and, on the other hand,
that retrieved passages in the prompt make QA models’ outputs less varied. Our Passage
Utility approach performs on par or outperforms all other methods with a single small-model
inference step on each input passage.

Passage Utility performs particularly well on challenging question answering tasks repre-
sented by datasets like PopQA and RefuNQ. In these cases, our light-weight uncertainty
estimation model works better than p(true) which requires the same QA model (i.e., the
same backbone LLM) to judge the correctness of its own generated answers. We speculate
that for questions with high uncertainty, i.e., where the model does not have the knowledge
to answer (e.g., questions about non-existing concepts in RefuNQ), it confidently generates
a response and also fails at assessing it. We attribute the Passage Utility’s success to the
fact that it has been specifically trained to detect situations where the target QA model is
prone to answer incorrectly (i.e., when provided with retrieved passages of lower relevance).
The six QA tasks pose different retrieval challenges. On TQA, retrieval results are often of
good quality: for 73% of the questions, the top-5 retrieved passages contain the gold answer
string. In contrast, on PopQA the percentage reduces to 63% and on RefuNQ the quality
of retrieval is deliberately low (as it consists of unanswerable questions). Across models
(Table 1), our approach is comparable to p(true) when retrieved passages contain the answer
and excels in cases of low quality retrieval.

Passage Utility also performs well with different QA model sizes (within the same family),
i.e., GEMMA2-9B and 27B (Table 1). We observe a noticeable decrease in performance
for most information-theoretic models when using the biggest GEMMA model (27B). We
attribute this to the fact that the 27B model more confidently makes less errors and its
calibration may be affected more by the fine-tuning step (Tian et al., 2023). p(true), on
the other hand, benefits from the largest model’s context understanding and memorized
knowledge.

It is important to note that our approach is lite-weight at inference time. In Figure 2 we
report average AUROC per method with respect to the number of input tokens at inference
time and the number of parameters involved in uncertainty estimation. We report scores for
GEMMA2-9B and its bigger version GEMMA2-27B. As can be seen, our approach which is
based on a BERT encoder (Devlin et al., 2019) with 110M parameters and a small number of
input tokens achieves on aggregate better performance than more expensive approaches.
For the 27B QA model, p(true) edges closer to passage utility, however, at the expense of
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Figure 2: Average AUROC across our six
development sets (y-axis) with respect to
number of input tokens at inference time
(x-axis) and number of parameters (size of
the circles). We present results for perplex-
ity (PPL), Semantic Entropy (SE), p(true),
and Passage Utility (PU). We exclude En-
tropy (which is close to SE) for readability.
We compare the smaller GEMMA2-9B and
its bigger version 27B. Thinner circles posi-
tioned in the left corner are better.
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Figure 3: Average accuracy (across our
six test sets) with GEMMA2 sizes 9B and
27B (G9B, G27B), LLAMA-3.1-8B (L8B), and
MISTRAL-7B-V0.3 (M7). Black dots: QA
models always answer; colour dots: QA mod-
els answer 80% of the cases they are most
confident about.

thousands of input tokens and ∼26 billions more parameters. This indicates that p(true)
will be less efficient in QA settings where latency and cost are critical. In Appendix B we
provide a cost analysis in terms of model calls.

Passage Utility leads to selective answering. Model uncertainty can be used to decide
whether to provide an answer to a question or not. Figure 3 shows average accuracy
when the target QA models choose to answer 80% of the cases they are most confident
about. For comparison, we also show QA accuracy when always answering, i.e., black bold
dots. All uncertainty quantification approaches improve model accuracy. Across different
LLM QA backbones, Passage Utility performs on par with or better than more expensive
uncertainty estimation approaches such as p(true). For instance, when looking at selective
performance according to Passage Utility, the biggest GEMMA2-27B model improves by +9
points (0.74 vs 0.65). In Appendix G.3 we report the full set of selective accuracies at different
thresholds.

Passage Utility shows potential for retrieval reranking. To further assess the quality of
the Passage Utility scores and to highlight their potential for retrieval reranking we carry
out the following ablation study. Since most previous work (Asai et al., 2024; Xie et al., 2024;
Yoran et al., 2024) on retrieval augmented QA prompts the QA model with the top-5 (or less)
input passages, we hypothesize that our passage utility score could be an effective reranking
method after retrieval (Nogueira et al., 2019; Ma et al., 2024; Yao et al., 2024). We test this
hypothesis by computing the accuracy of the GEMMA2-9B QA model when prompted with
the top-k passages (with k in the range of {5, 3, 1}) out of a sample of |R| = 10 passages
provided by an external retriever.

In Figure 4, we compare performance under two passage-ranking strategies: one based on
relevance scores from an external retriever (gray), and the other based on the QA models
self-assessed utility of individual passages, following Yao et al. (2024). We report two
self-assessment variants, one using the predictions of the Passage Utility model (red) and
another one based on the perplexity of the QA model when answering with individual
retrieved passages (blue). Passages that yield answers with lower perplexity should be
ranked first. Figure 4 shows average accuracy values across five development sets (NQ,
TQA, WebQ, SQuAD, and PopQA), at different cutoff values (k). As can be seen, the QA
model achieves higher accuracy when passages are ranked according to their utility. This
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Figure 4: Average RAG accuracy with
GEMMA2-9B across the five QA develop-
ment sets. Points on the x-axis correspond
to different context sizes, when taking the
top-k, passages according to query relevance
(gray) and self-assessment via perplexity
(PPL; blue), and Passage Utility (PU; red).

G9B G27B L8B M7B

PPL 0.61 0.59 0.73 0.70
p(true) 0.75∗ 0.78 0.81 0.78
Regular Entropy 0.64 0.60 0.77∗ 0.71
Semantic Entropy 0.70 0.65∗ 0.74 0.73
Passage Utility 0.78 0.77 0.77∗ 0.74∗

Table 2: AUROC values for QA models
based on GEMMA2-9B/27B, LLAMA-3.1-
8B, and MISTRAL-7B-V0.3 on HotPotQA
test set. Best values per model are high-
lighted in bold; we also mark with∗ next
best values which are significantly different
using the paired De Long test (p < 0.05).

finding suggests that Passage Utility scores indeed reflect which passages are useful for the
target QA model.

Passage Utility struggles with multi-hop questions. Our approach estimates uncertainty
by predicting individual passage utility and selecting the maximum utility score from a set
of retrieved passages. A potential limitation of this method emerges in multi-hop questions
that require evidence from multiple passages (Yang et al., 2018; Pal et al., 2022). Specifically,
the QA model is unable to answer correctly when prompted with any individual passage
(resulting in uniformly low utility scores), yet succeeds when given the complete set of
passages (in which case the maximum utility score over individual passages fails to reflect
this outcome). To quantify this limitation, we evaluate our approach on the widely used
HotPotQA dataset (Yang et al., 2018), using the splits as provided by Trivedi et al. (2023),
and the same retrieval settings as defined above (Section 4). Table 2 shows AUROC values
for all uncertainty estimation methods. In Appendix E, we provide an analysis on a small
set of multi-hop questions making use of synthetic HotPotQA data.

Across models, our approach is on par with p(true) and sequence entropy, and better than
perplexity (Table 2). Manual inspection of 100 examples from the development set with
GEMMA2-9B as the target QA model, reveals two major trends. Firstly, the QA model
frequently (48 cases) manages to correctly answer multi-hop questions using only one of the
required ’hop’ passages, often not needing the entire set. This observation aligns with recent
findings in Joren et al. (2025). Secondly, in numerous instances (29 cases), the retrieved
passages did not contain any useful evidence, leading the model to answer incorrectly
even when prompted with the full set. This underscores the inherent difficulty of effective
retrieval for complex questions. Many studies (Jeong et al., 2024; Trivedi et al., 2023; Lin et al.,
2025) tackle this challenge through sophisticated QA pipelines. Notably, certain approaches
decompose complex questions into sub-questions that can be answered independently. In
such multi-hop pipelines, our approach could be naturally applied at the sub-question level.

6 Discussion

Key Properties and Usability Scenarios Each uncertainty quantification approach comes
with its own advantages and limitations. This entails that the choice of a specific method
depends on criteria like available resources, desired latency, and the necessary level of
control and trustworthiness for the QA system. For example, in high-stakes applications, a
method that favours higher rates of false positives (thereby allowing human intervention)
and reduces the chance of overconfident false negatives would be better, even if it requires
training data and regular updates.
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Low la-
tency

No Training
Data

No Fine-
tuning

Recognises
Erroneous
Evidence

Mitigates
overconfi-
dence

PPL 3 3 3
p(true) 3 3 3
Semantic Entropy 3 3
Passage Utility 3 3 3

Table 3: Categorization of the uncertainty estimation approaches studied in Section 5
according to different properties (table headers).

In Table 3, we summarise existing features (and limitations) of various uncertainty esti-
mation approaches as we compare them to our work. The first column reports latency, as
previously discussed in Figure 2. Retrieval augmented QA models can err as a result of
being exposed to erroneous sources such as misleading passages (Xie et al., 2024) or inaccu-
rate training data (Vu et al., 2024). Information-theoretic methods are not equipped with
an explicit mechanism to deal with these cases (Farquhar et al., 2024; Soudani et al., 2025).
Moreover, these methods are also known to suffer from over-confidence (Simhi et al., 2025;
Soudani et al., 2025; Sung et al., 2025). While p(true) may be able to detect these challenging
cases to a certain extent, Passage Utility can be specifically trained to recognise them. In terms
of supervision, both p(true) and Passage Utility require task-specific training examples, and
the performance of both approaches deteriorates on out-of-distribution examples (Table 8).

Training Data Requirements Our approach requires question-answer pairs to curate a
dataset with retrieved passages and utility scores for training. However, general or task
specific training datasets could be generated semi-automatically Li & Zhang (2024); Wei et al.
(2024). Moreover, in experiments we show that in some QA tasks such as WebQ or PopQA
this training data can be relatively small, i.e., in the region of 2.5k or 10k respectively.

Fine-Tuning Requirements Our approach, by design, requires fine-tuning to adapt to
new QA tasks or models, as its core aim is to model the accuracy behavior of the target QA
model. To enhance versatility across QA tasks, a unified training set encompassing diverse
QA tasks could be compiled to train a single passage utility predictor. More practically,
advanced training schemes promoting generalization, such as meta-learning with a varied
set of QA tasks and QA model examples, could be employed to develop a single passage
utility predictor.

In addition, while the utility predictor may necessitate recalibration for distinct QA models
or tasks, its performance on out-of-distribution scenarios (Appendix D) establishes it as a
robust warm-up base model. This allows for subsequent fine-tuning with a reduced number
of target examples (Kamath et al., 2020; Zhang et al., 2021). Finally, as the utility predictor
relies on a small model, the cost of fine-tuning in terms of resources and time is low.

7 Conclusions

In this work we address uncertainty estimation in the context of retrieval augmented
QA with a method that relies on individual passage utilities. Key in our approach is the
definition of utility in terms of the behaviour of the QA model and whether it is able to
provide a correct answer given a retrieved passage. We train a small neural model on passage
utility judgements elicited from the QA model’s responses and use utility predictions to
estimate answer uncertainty. Experimental results show that our uncertainty estimator is
competitive or better than existing strong methods while being light-weight. Future work
could extend this approach to long-form generation tasks (Stelmakh et al., 2022; Gao et al.,
2023; Min et al., 2023; Zhang et al., 2024a) where evaluating whether answer correctness is
more challenging (Zhang et al., 2024b) and to multi-modal QA scenarios (Borszukovszki
et al., 2025).
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A Ablation of the Passage Utility Predictor Training Objective

Table 4 shows AUROC results on answer uncertainty prediction with Passage Utility esti-
mators trained with different variants of the objective in Equation (5). The first row shows
the full objective (see training details in Section F.2), the second row shows a variant where
the ranking objective uses only entailment utility annotations (e), and in the third row the
objective is solely based on accuracy prediction (LBCE). As can be seen, there is a drop
in performance when the pairwise ranking loss is not used (i.e., last line of Table 4); this
component of the objective provides a smoother signal on passage utility, which is empir-
ically beneficial. However, when the pairwise ranking loss is only based on entailment,
performance drops by several points, highlighting the importance of combining both to
model QA answering behaviour.

Table 5 reports various ablation studies (with GEMMA2-9B on the WebQ development set)
with different instantiations of the Passage Utility score υM and our training objective. We
present different ways to combine accuracy (a) and entailment (e) scores to induce utility
rankings with the pairwise ranking loss Lrank, (·) (Equation 3). These include average (a +
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Objective Terms G9B L8B M7B

Lrank, (e + a)/2 + λLBCE 0.80 0.81 0.80
Lrank, (e) + λLBCE 0.73 0.73 0.71
LBCE 0.78 0.78 0.80

Table 4: Answer uncertainty estimation with Passage Utility predictors trained with different
variants of the objective in Equation (5). AUROC values for GEMMA2-9B (G9B), LLAMA3.1-
8B (L8B), and MISTRAL-7B-V0.3 (M7B) are averaged over development sets.

LBCE Lrank + λLBCE Lrank
(e + a)/2 (e + a) ((e|1− e) + a) (e) (e + a)/2 (e + a) ((e|1− e) + a) (e) (a)

0.71 0.75 0.74 0.72 0.63 0.65 0.63 0.62 0.61 0.53

Table 5: Answer uncertainty estimation with Passage Utility predictors trained with different
variants of the objective in Equation (2). AUROC values are for GEMMA2-9B and the WebQ
development set.

e)/2 as in Equation 2, addition (a + e), addition but inverting the entailment score ((e|1−
e) + a) when the passage yields an inaccurate answer (a = 0), or when one of the two is
given a zero weight, i.e., (a) or (e) alone. We asses these ranking variants when using the
ranking objective alone (rightmost block) as well as when combined with the binary cross-
entropy objective LBCE (Equation 5) (middle block); we also report performance when only
the LBCE objective is used (leftmost block). All model variants are trained with rank-based
model selection and λ = 0.25 following training details in Section F.2.

When looking at the pairwise ranking objective alone (rightmost block), entailment domi-
nates the ranking and the utility scores learnt; (e) pairwise ranking as well as (a + e) variants
yield utility scores that have similar discriminative power. The (a) variant exhibits the worst
performance, given that many pairs are discarded due to having the same utility. AUROC
values improve when the pairwise ranking is combined with the cross-entropy objective
(middle block). In this case, in addition to enforcing the pairwise ranking with Lrank, (·), the
utility scores are regularised. In other words, the utility scores of a pair of passages with
the same accuracy (i.e., only ordered by entailment) will end up closer (differ less) than the
utility scores of a pair of passages with different accuracies (differ more). This is reminiscent
of the Bradley-Terry model (Bradley & Terry, 1952): in the first case, one passage is better
than the other with a small probability, while in the second case the probability of one being
better than the other is higher. The exception here is the Lrank, (e) + λLBCE variant where
the pairwise ranking by entailment may often contradict the binary cross-entropy signal.

B Test Time Cost of Uncertainty Estimation Methods

Table 6 shows the cost of estimating uncertainty for question x, measured by the number of
inference calls required. Simple information theoretic methods (e.g., PPL) require a single
call to the target QA model with the retrieval augmented QA prompt (i.e., |R| retrieved
passages and question x). However, approaches that estimate uncertainty based on diversity
(e.g., Regular Entropy, Semantic Entropy, and p(true)) require generating N answers, i.e.,
N inference calls with the retrieval augmented QA prompt. In addition, Semantic Entropy
requires the computation of answer clusters (i.e., grouping answers with the same meaning),
so additional calls to an entailment model are required to compare the set of sampled
answers. p(true) requires one additional LLM call to elicit a True/False answer but with
a very long prompt including in-context examples and the assessment question with the
|R| retrieved passages, sampled and most likely answers, and question x (see Table 15).
In contrast, our approach requires |R| utility predictions with a BERT-sized model. For
instance, in our experimental setup with N = 10 samples and retrieval augmented QA
with |R| = 5, the Semantic Entropy approach would require 11 forward passes with the
QA model prompted with 5 passages (one the greedy candidate and 10 random samples)
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Methods Inference Calls at Test Time
PPL 1 G
p(true) (N + 1) G + 1 E
Regular Entropy (N + 1) G
Semantic Entropy (N + 1) G + (N

2 ) E
Passage Utility |R|BERT-F

Table 6: Number and type of inference calls required to estimate answer uncertainty for
question x and set of retrieved passages R. G means inference is performed with a retrieval
augmented QA model, i.e., an LLM forward pass with the prompt including the set of |R|
retrieved passages and question x to generate a candidate answer y. E is inference with an
evaluation model, e.g., a forward pass to ask an LLM for correctness in p(true) or a forward
pass with an entailment model in Semantic Entropy. Bert-F is an inference call to predict
passage utility for passages p in R and question x.

G9B G27B L8B M7B

RACC ↓INDACC↑ a 0.12 0.13 0.15 0.15
a + e 0.04 0.04 0.05 0.06

RACC ↑ INDACC ↓ a 0.01 0.01 0.01 0.01

Table 7: Average proportion of cases (five development sets) where at least one individual
passage in R leads a correct answer (INDACC ↑) but the QA model prompted with R yields
an incorrect one (RACC ↓) (and vice versa RACC ↑ INDACC ↓).

plus 45 calls to the entailment model. Our approach requires 5 forward passes with the
BERT-based model.

C Generality of the Uncertainty Aggregation Strategy

To validate the intuition behind our uncertainty estimation step (Section 3.2), we compare
the behaviour of the QA model when prompted with individual passages in R versus when
prompted with R (i.e., the top-|R| passages). In particular, we want to inspect the proportion
of cases where our stratege of taking the maximum uitility score among the passages in R
does not agree with the entire set accuracy. In other words, we are interested in cases where
the QA model is accurate with at least one individual passage (INDACC ↑) but answers
incorrectly when promtped with R and vice versa. In this study, we consider two individual
passage accuracy variants (related to the combined definition of Passage Utility Section 3.1).
One is based on accuracy a (see Section 4) and is either 0 or 1. The other one is also based on
accuracy but smoothed by entailment e (computed by an off-the-shelf entailment model; see
Section 4) and downgrades cases where a = 1 into a = 0 if e < 0.5. The latter occurs in cases
where the QA model produces an answer that is accurate but not entailed by the passage.

We analyse the behaviour of four QA models (LLMs) across five datasets in our experi-
mental setup. Table 7 shows the proportion of model disagreements across development
sets. We can see that such disagreements amount to a relatively small number in both
settings, i.e., when at least one individual passage in R yields a correct answer (INDACC ↑)
but the QA model prompted with R yields an incorrect answer (RACC ↓) and vice versa
(RACC ↑ INDACC ↓). The results in Table 7 confirm that our aggregation approach based on
individual passages is fairly general. It approximates answer uncertainty when prompting
with |R| passages while avoiding the complexity of estimating uncertainty over all possible
combinations of input passages in terms of number and order.

Our study is related to the issue of understanding LLM sensitivity to external evidence
(Xie et al., 2024; Liu et al., 2024b), i.e., how the type of evidence (supportive, contradictory,
irrelevant, or misleading), the amount, and order of presentation affect LLM predictions
and interact with parametric knowledge. The Passage Utility predictor is trained to predict
the error of a target QA model (LLM) on answering questions, independent of the type of
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passage or any memorized knowledge. Given a question-passage pair, if the LLM relies
on its memorized knowledge rather than adapting to the passage and still produces the
correct answer, or conversely, adapts to the passage but produces an incorrect answer, then
the Passage Utility predictor should reflect this outcome by predicting a correct or incorrect
answer accordingly Xie et al. (2024).

Note that the Passage Utility predictor is meant to be synchronized with the target QA
model and judgments of what is (or not) a correct answer. If an answer to a question changes,
the target QA model answer correctness on this question may also change, and the Passage
Utility predictor should also reflect this (i.e., it should be adapted with new examples).
Multiple passage interactions studied in datasets with synthetic evidence (Longpre et al.,
2021; Xie et al., 2024) are observed to a lesser extent in our experiments with six datasets
and external retrievers. This has also been recently pointed out in Hagstrm et al. (2025). Our
approach could be combined with additional features to capture more complex interactions
(Dong et al., 2018). Investigating and understanding the relation between QA model
uncertainty and (improving) context utilization is an interesting topic on its own right (Xie
et al., 2024; Longpre et al., 2021; Hagstrm et al., 2025) but out of scope for this paper.

D Out-of-distribution Generalization of Uncertainty Estimation

We assess the generalization ability of our Passage Utility estimator both in terms of new
QA tasks and QA models. We train a unique Passage Utility predictor for the GEMMA2-9B
model. Following previous work on question answering and out-of-distribution (o.o.d)
scenarios (Kamath et al., 2020; Zhang et al., 2021), we train it on the SQuAD dataset and
then use it to predict zero-shot (i.e., without further fine-tuning) passage utilities on all other
datasets (test set). As p(true) relies on 20 in context training examples, we also evaluate its
ability to generalise in out-of-distribution settings.

Table 8 (QA Task block) shows AUROC for answer uncertainty estimation in o.o.d scenarios.
As an upper bound, the i.i.d block of the table shows AUROC values in the in-distribution
scenario for Passage Utility and p(true). We compare o.o.d performance w.r.t. PPL and
Semantic Entropy which do not rely on training examples. Although Passage Utility
performance decreases in o.o.d settings, it remains competitive in four out of five datasets.
In these four cases, it is always statistically significantly different from the PPL method and
comparable to p(true) and Semantic Entropy. Interestingly, p(true)’s performance also drops
in all o.o.d test sets showing that relying on a fixed number of in-context learning examples
is neither a robust nor scalable adaptation method.

To understand the observed performance drop, we conducted a comparative analysis of
passage utility predictions for 50 question-passage pairs. We examined predictions from
a utility predictor trained on WebQ data (i.i.d) versus one trained on SQuAD (o.o.d). We
sampled 10 WebQ test questions: 5 for which the predicted utility decreased from high
under i.i.d. conditions to low under o.o.d. conditions (changing from true negative to false
positive), and 5 for which it increased in the opposite direction (changing from true positive
to false negative). In both scenarios, the o.o.d predictions were predominantly influenced
by token overlap and similarity. We hypothesize that when faced with o.o.d questions (e.g.,
in terms of type, length, or topic), the prediction mechanism defaults to predictions based
on a general notion of question-passage similarity, disregarding whether the QA model can
answer the question with the given passages. For passages with low (high) similarity to the
question, it will predict low (high) utility scores. This behaviour may be a consequence of
under-training, suggesting that the Passage Utility predictor cannot predict the accuracy of
the target QA model on these o.o.d questions and their corresponding retrieved passages.

To empirically validate these observations, we calculate Spearman’s ρ correlation coefficients
between the predicted Passage Utility scores and the corresponding retriever relevance
scores (as computed by Contriever-MSMARCO; Izacard et al. 2022) for each passage, ex-
amining correlations separately for both i.i.d and o.o.d predictions. We use the Retriever
Score because it measures the semantic relation between questions and retrieved passages.
In agreement with our manual inspection, there is a positive correlation between Passage
Utility and Retriever Score in the o.o.d setting (0.536 with p-value ¡ 0.01), suggesting that
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GEMMA2-9B NQ TQA WebQ PopQA RefuNQ

Q
A

Ta
sk i.i

.d p(true) 0.73 0.75 0.67 0.81 —
Passage Utility 0.76 0.85 0.69 0.86 —

o.
o.

d

PPL 0.64 0.68∗ 0.52 0.59∗ 0.51
Semantic Entropy 0.70 0.73 0.58∗ 0.73 0.59∗
p(true) (SQuAD) 0.67 0.63 0.63 0.72 0.62
Passage Utility (SQuAD) 0.65 0.79 0.60 0.72 0.79

GEMMA2-27B NQ TQA WebQ PopQA RefuNQ

Q
A

M
od

el i.i
.d p(true) 0.77 0.83 0.67 0.79 0.60

Passage Utility 0.73 0.82 0.69 0.87 0.80

o.
o.

d

PPL 0.64∗ 0.50 0.53 0.53 0.51
Semantic Entropy 0.68 0.62 0.59 0.66 0.58
p(true) (GEMMA2-9B) 0.73 0.71∗ 0.64∗ 0.75∗ 0.59∗
Passage Utility (GEMMA2-9B) 0.75 0.80 0.68 0.87 0.79

Table 8: Out-of-domain performance of Passage Utility predictor for GEMMA2-9B both
in terms of QA task and QA model. i.i.d blocks report AUROC values from our main in-
distribution experiments (Table 1); o.o.d blocks contain the o.o.d comparison. Best values are
highlighted in bold; we also mark with ∗ next best values which are significantly different
using the paired De Long test (p < 0.05). For the QA task, Passage Utility and p(true) are
supervised with SQuAD data and evaluated on NQ, TQA, WebQ, PopQA, and RefuNQ test
data. For the QA model, Passage Utility predictors are trained on GEMMA2-9B and used to
estimate uncertainty for GEMMA2-27B; p(true) assessment is provided by GEMMA2-9B.

Passage Utility falls back to textual similarity. In contrast, the i.i.d setting exhibits a negative
and weaker correlation (-0.318 with p-value ¡ 0.05), indicating that training successfully
aligns Passage Utility predictions with the target QA model’s actual performance rather
than superficial retriever similarity scores.

We also evaluate generalisation to a new QA model, by training the Passage Utility predictor
on utility labels observed for GEMMA2-9B and use its predictions to estimate uncertainty
for the bigger GEMMA2-27B model. We also evaluate p(true) in this o.o.d setting, i.e.,
we create p(true) prompts as usual with GEMMA2-27B generated answers (greedy and
sampling), but ask GEMMA2-9B to judge the probability of the most likely answer being true.
Table 8 (QA Model block) shows AUROC results; for reference, we include in-distribution
values (i.i.d block) and compare the o.o.d results with comparison methods. Passage Utility
outperforms all other methods across the board, and while still competitive, p(true) exhibits
a higher decrease in performance. These preliminary results suggest that in the context
of retrieval augmented QA, models behave alike (also suggested by the distribution of
observed correct/incorrect individual passage utilities in Table 12). This highlights practical
benefits of our approach, such as training a base Passage Utility predictor using data
generated by a less expensive model or developing a more general predictor applicable
across multiple QA models.

Finally, we train a unique Passage Utility predictor for all QA tasks and assess its gener-
alisation capabilities. To this end, we train a predictor for the GEMMA2-9B model on a
random sample drawn from the five training sets of size equivalent to the training sets of
the individual QA task predictors. Specifically, we took 10k from NQ, TQA, and SQuAD, 3k
from PopQA, all WebQ, totalling 35,474 instances for training and 500 instances from each
for validation; the number of pairwise instances in the final curated training set is 354,379.
For p(true), we mixed 4 randomly sampled examples from each dataset as in-context train-
ing examples. We follow the same training procedure as described in Section F.2 (with
combined model selection and λ = 1). We show AUROC results in Table 9. Across the six
test sets, the unique Passage Utility predictor trained on a mix of QA tasks (bottom block)
achieves similar performance to the individual predictors trained on per-task datasets (top
block). The unique predictor keeps comparable or better performance than p(true) and
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NQ TQA WebQ SQuAD PopQA RefuNQ

Ta
sk p(true) 0.73 0.75 0.67 0.68 0.81 0.62

Passage Utility 0.76 0.85 0.69 0.80 0.86 0.79

U
ni

qu
e PPL 0.64∗ 0.68 0.52 0.59 0.59 0.51

Semantic Entropy 0.70 0.73∗ 0.58∗ 0.63∗ 0.73 0.59
p(true) 0.71 0.70 0.68 0.63∗ 0.75∗ 0.66∗
Passage Utility 0.69 0.83 0.68 0.79 0.85 0.79

Table 9: Generalisation of a Unique Passage Utility predictor for GEMMA2-9B trained on a
mix of QA tasks and evaluated on the six test sets (lower block). Best values are highlighted
in bold; we also mark with ∗ next best values which are significantly different using the
paired De Long test (p < 0.05). The upper block reports AUROC values for the Passage
Utility from predictors trained for GEMMA2-9B on indiviual QA tasks’ training datasets.
We also compare p(true) when in-context learning examples are all from the same QA task
(upper block) versus from a mix of tasks (lower block).

outperforms PPL and Semantic Entropy. This preliminary study suggests that is feasible to
train a more general predictor for various QA tasks.

E Synthetic Qualitative Analysis of Passage Utility in Multi-hop QA

In multi-hop QA Passage Utility may fail at cases where the QA model cannot answer when
prompted with any individual ’hop’ passage, but answers correctly when prompted with
the full set. To analyse this limitation, we carry out a qualitative analysis. As discussed
in Section 5, there are two scenarios in retrieval augmented multi-hop QA (given existing
datasets and current LLMs). Either models can answer with one passage (thus no multi-hop)
or retrieval completely fails. Thus, to be able to pinpoint actual multi-hop QA cases and
expose the limitations of our approach, we make use of synthetic HotPotQA data (Yang
et al., 2018).

First, we use the sets of gold passages provided in the HotPotQA dataset to categorise
question types as follows. We prompt the QA model with individual gold passages and
with combinations thereof, measuring accuracy. Out of the 500 test questions, 475 are
answerable with only one gold ’hop’ passage, 13 require multiple passages, and 12 are
unanswerable. Secondly, we focus on the 13 requiring multi-hop questions and insert gold
’hop’ passages within the retrieved set for those where retrieval completely fails. Then, we
run QA and uncertainty estimation. In 6 of 13 cases, our approach fails to predict that the
QA models answer will be correct. It is important to note, however, that these 13 cases
represent only 2.6% of the total (13 out of 500).

F Experimental Details

F.1 Datasets and Splits

In our experiments, we use six QA tasks which we describe below. Table 10 shows dataset
statistics and example question-answers pairs.

Natural Questions (NQ; Kwiatkowski et al. 2019) is a QA dataset compiled from real user
questions submitted to the Google search engine. As part of the dataset curation process,
annotators judge the quality of questions and associate them with a short answer that can
be extracted from a related Wikipedia page.

TriviaQA (TQA; Joshi et al. 2017) is a question answering dataset designed for training and
evaluating machine learning models on open-domain question answering tasks. The dataset
was created by gathering questions from trivia websites, along with their corresponding
answers, to provide a broad range of factual questions.
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Dataset Train Dev Test Example Question Example Answer
NQ 79,168 8,757 3,610 Who plays Letty in Bring it on all or

nothing?
Francia Raisa

TQA 78,785 8,837 11,313 Who was the first artistic director of
the National Theatre in London?

Lord Laurence Olivier

WebQ 2,474 361 2,032 What party was Andrew Jackson? Democratic-
Republican Party

SQuAD 78,713 8,886 10,570 What is the Grotto at Notre Dame? A Marian place of
prayer and reflection

PopQA 10,000 1,267 3,000 Who was the director of Champion? Rabi Kinagi
RefuNQ — — 2,173 Who does the voice over in the Re-

quirtion?
—

Table 10: Dataset statistics, number of instances per Train/Development(Dev)/Test sets,
and example question-answer pairs (all taken from the Dev set except for RefuNQ).

WebQuestions (WebQ; Berant et al. 2013) was mined off questions generated with the
Google Suggest API. The answers to the questions are defined as Freebase entities (i.e., their
string label) and were elicited by Amazon Mechanical Turk (AMT) annotators.

SQuAD (Rajpurkar et al., 2016) contains questions formulated by AMT annotators based
on a given Wikipedia paragraph, with the answer being a short span in that paragraph.
Annotators were encouraged to use paraphrasing when writing the question. The answer
types not only cover named entities but also other categories such as noun- and verb-phrases.

PopQA Mallen et al. (2023) is an open-domain QA dataset, focusing on popular culture
topics, such as movies, TV shows, music, and sports. It contains question-answer pairs
derived from (subject, relation, object) triples in Wikidata . Triples were translated into
natural language and the object entity was taken to be the gold answer. The collection
process focused on gathering questions about subject entities of varying popularity.

RefuNQ Liu et al. (2024a) is derived from NQ and consists of answerable and unanswer-
able questions. Unanswerable questions are created by replacing entities in the original NQ
question by non-existing concepts.

We follow previous work (Lee et al., 2019) and use only the question and gold answers, i.e.,
the open versions of NQ, TQA, and SQuAD. We use the unfiltered TQA dataset. We follow
the train/dev/test splits as used in previous work Lee et al. (2019) and randomly split
PopQA. RefuNQ only provides a test set so our experiments on this dataset are zero-shot
from a Passage Utility predictor trained on SQuAD. We follow Farquhar et al. (2024) and use
400 test examples randomly sampled from the original larger test datasets for evaluation of
uncertainty quantification.

F.2 Implementation Details

QA Models For all question answering tasks, we use the off-the-shelf Contriever-
MSMARCO tool (Izacard et al., 2022) to retrieve sets of passages R for question x from
Wikipedia and the official Wikipedia embeddings based (2018 snapshot) as our document
knowledge-base. For PopQA, we follow the work of Mallen et al. (2023) who also use the
full 2018 English Wikipedia dump.

The QA prompt used for all models (embedded in the corresponding chat templates) is
shown in Table 14. For inference, we set the maximum number of generated tokens to 50 for
both the greedy (most likely answer) as well as temperature scaled (sampled candidates)
decoding. We use vLLM for inference (Kwon et al., 2023). For all models, inference was run
on a single A100-80GB GPU.

Curated Passage Utility Dataset We train our passage utility predictor on a dataset DM
curated from benchmark D, e.g., WebQ, consisting of question and gold answer pairs (x, y).
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Models NQ TQA WebQ SQuAD PopQA

GEMMA2-9B 395,438 393,475 24,721 393,285 99,770
GEMMA2-27B 395,426 393,477 24,723 393,293 99,778
LLAMA-3.1-8B 790,862 393,465 24,713 393,288 99,787
MISTRAL-7B-V0.3 395,397 393,474 24,720 393,271 99,772

Table 11: Number of pairwise training instances in the curated datasets to train the Passage
Utility predictor with the combined pairwise ranking and binary cross-entropy losses
(Section 5).

Incorrect Mixed Correct

GEMMA2-9B 21% 52% 27%
GEMMA2-27B 20% 53% 27%
LLAMA-3.1-8B 22% 55% 23%
MISTRAL-7B-V0.3 21% 56% 23%

Table 12: Number of training instances in curated datasets to train the passage utility
predictor with the combined pairwise ranking and binary cross-entropy losses (Section 5).

For each question we retrieve the top-k passages. Then, we pair question x and retrieved
passages p with utility scores υM which we obtain after running the QA model M on inputs
(x, p) and computing the generated answer accuracy and entailment scores (Section 3.1), i.e.,
we create tuples (x, p, υM). From the set of k tuples for question x, we derive (k

2) instances
for our pairwise ranking loss.

In experiments, we use k = 5 retrieved passages per question. Table 11 reports the size
(number of training instances) of the curated datasets for each QA task and model. From
each question and set of top-5 retrieved passages, we derive 10 pairwise ranking instances,
discarding those that have equal utilities (e.g., from the WebQ training split with 2,474
question-answer pairs, we curate 24,720 instances with MISTRAL-7B-V0.3). As our top-5
passages are obtained via a real retrieval module, i.e., not synthetically assembled, there are
questions for which all passages in the top-5 set lead to a correct (incorrect) answer. In these
cases, the pairwise ranking is dominated by the entailment score (i.e., accuracy is the same).
Table 12 shows the distribution of questions with all retrieved passages leading to the same
accuracy (Correct/Incorrect) or mixed (Mixed) accuracies in the curated dataset for each
QA task and model.

Passage Utility Predictor Training Details We train a different predictor for each target
QA model and QA task. Given the large number of predictors required in our experiments,
we initially tested the hyper-parameters used in Fang et al. (2024) on the NQ dataset and
choose a set thereof for all predictor instances. We train each predictor for 3 epochs, with
a batch size of 32 examples, learning rate equal to 2e−5, and weight decay 0.001 (with
the exception of LLAMA-3.1-8B and WebQ where we used 0.01). For each predictor we
performed search on values for λ, i.e., the contribution of the LBCE loss (Equation 5), and
different criteria for model selection, i.e., the best at pairwise ranking or at both pairwise
ranking and accuracy prediction (combined).

Table 13 shows the configuration for each predictor. Table cells show selection criteria (R
for ranking and C for combined) and the value for λ. At inference time we predict a single
Passage Utility score given by the selected best checkpoint. For all predictor instances
(except for all WebQ and PopQA predictors and the predictor for LLAMA-3.1-8B and NQ),
we use half of the available training data to speed up experiments. Training and inference
was run on a single A100-40GB GPU; training ranges from 2 to 12 hours depending on the
dataset.

Comparison Approaches In this section, we describe additional answer uncertainty es-
timation methods (for which we present supplementary results in Section G). Maximum
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Models NQ TQA WebQ SQuAD PopQA HotPotQA

GEMMA2-9B C, 0.25 C, 0.25 R, 0.25 C, 1 C, 1 C, 0.25
GEMMA2-27B C, 0.25 C, 1 C, 1 C, 0.25 R, 0.25 C, 1
LLAMA-3.1-8B C, 0.25 C, 0.25 C, 0.25 C, 1 C, 1 C, 0.25
MISTRAL-7B-V0.3 R, 0.25 C, 1 C, 0.25 C, 0.25 C, 0.25 C, 1

Table 13: This table shows the λ value and selection criteria (R for pairwise ranking or C for
combined pairwise ranking and accuracy prediction) for each Passage Utility predictor in
our experiments.

Sequence Probability (MSP) is based on the probability of the most likely answer and is
computed as:

MSP(x, R,M) = 1− P(y|x, R;M). (12)

Note that, in contrast to PPL(x, R,M) reported in the main section of the paper, this metric is
biased by answer length, i.e., identifying an answer to have low probability (low confidence)
because of its length. Despite the fact that QA models are instructed to produce short
answers, they do not always follow instructions. For this reason, we consider perplexity
a more accurate metric. Indeed, answer length could indicate that the model is uncertain
about the answer. Thus, we also estimate answer uncertainty from the Average Answer
Length (AvgAnsLen) as the average number of words in the sampled answers. As seen in
Section G.3, Table 20, MSP and AvgAnsLen perform similarly across the board.

We also report Cluster Assignment (CA) which is a variant of SE without answer probabili-
ties where the probability of each generated meaning (i.e., a cluster) is approximated from
the number of answers in the cluster. We found that in general CA estimations are very
close to Semantic Entropy ones.

Another uncertainty estimation approach is the negative mean Point-wise Mutual Informa-
tion (PMI; Takayama & Arase 2019) over tokens; i.e., it compares the probability of answer
sequence y given a prompt with question x and passages R w.r.t the probability given byM
to y without any context. Intuitively, the higher the point-wise mutual information, the
more certain the QA model is on generating y (i.e., the answer is related to or depends on x
and R). PMI is computed as:

PMI(x, R,M) = − 1
|y|

|y|

∑
t=1

log
p(yt|y1..t−1, x, R;M)

p(yt|y1..t−1;M)
. (13)

We also report Retriever Score as a baseline for Passage Utility. Instead of using the predicted
Passage Utility we use the original relevance score assigned by the external retriever (i.e.,
Contriever MS-MARCO).

We use the implementation provided in Farquhar et al. (2024) to compute Regular Entropy,
Semantic Entropy, Cluster Assignment, and p(true). Note that we do not include the super-
vised baseline reported in Farquhar et al. (2024) as the authors show that it underperforms
simple information-theoretic metrics and in addition only works for white-box models.
Note that while AvgAnsLen and Retriever Score do not strictly provide scores in the [0, 1]
interval, the package that computes AUROC finds ranking decision thresholds.4

Metrics We use the implementation provided in Farquhar et al. (2024) to compute AUROC,
Accuracy at X% of rejection, and AURAC metrics.

We use Qwen2-72B-Instruct (Yang et al., 2024) to obtain accuracy judgments (i.e., A judge,
Section 4); specifically, we use the Activation-aware Weight Quantization (Lin et al., 2024),
version Qwen2-72B-Instruct-AWQ. We prompt the accuracy evaluator with the prompt
proposed in Sun et al. (2024), as we found it to perform well on our datasets. The accuracy
evaluation (AccLM) prompt is shown in Table 16. In a sample of 840 generated answers
human and LLM-based judgment of correctness agreed 98% of the time (Sun et al., 2024).

4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.det curve.html
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Retrieval augmented QA prompt

Knowledge:
[1] passage
[2] passage
...
[|R|] passage

Answer the following question with a very short phrase.

Question: question

Table 14: Prompt designed as user turn for QA models.

p(true) prompt

Question: question
Brainstormed Answers: most likely answer
sampled answer 1
...
sampled answer N
Possible answer: most likely answer
Is the possible answer:
A) True
B) False
The possible answer is: correct choice

...

Knowledge:
[1] passage
[2] passage
...
[|R|] passage

Question: question
Brainstormed Answers: most likely answer
sampled answer 1
...
sampled answer N
Possible answer: most likely answer
Is the possible answer:
A) True
B) False
The possible answer is:

Table 15: Prompt used for p(true) approach. Items in blue are filled with in-context examples
from the training set and the current example being evaluated. N represents the number of
sampled answers. The “sequence of in-context examples” prefix is a sequence of examples
taken from the training split with the same question format but with the answer to The
possible answer is: resolved.

F.3 Prompts

The prompt we use for our QA models is shown in Table 14. Table 15 illustrates the prompt
used for the p(true) baseline. Table 16 shows the prompt used for the LLM-based accuracy
metric.
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Accuracy evaluation prompt.

You need to check whether the prediction of a question-answering system to a question is correct.
You should make the judgment based on a list of ground truth answers provided to you. Your
response should be ”correct” if the prediction is correct or ”incorrect” if the prediction is wrong.

Question: Who authored The Taming of the Shrew (published in 2002)?
Ground truth: [”William Shakespeare”, ”Roma Gill”]
Prediction: W Shakespeare
Correctness: correct

Question: Who authored The Taming of the Shrew (published in 2002)?
Ground truth: [”William Shakespeare”, ”Roma Gill”]
Prediction: Roma Gill and W Shakespeare
Correctness: correct

Question: Who authored The Taming of the Shrew (published in 2002)?
Ground truth: [”William Shakespeare”, ”Roma Gill”]”
Prediction: Roma Shakespeare
Correctness: incorrect

Question: What country is Maharashtra Metro Rail Corporation Limited located in?
Ground truth: [”India”]
Prediction: Maharashtra
Correctness: incorrect

Question: What’s the job of Song Kang-ho in Parasite (2019)?
Ground truth: [”actor”]
Prediction: He plays the role of Kim Ki-taek, the patriarch of the Kim family.
Correctness: correct

Question: Which era did Michael Oakeshott belong to?
Ground truth: [”20th-century philosophy”]
Prediction: 20th century.”
Correctness: correct

Question: Edward Tise (known for Full Metal Jacket (1987)) is in what department?
Ground truth: [”sound department”]
Prediction: 2nd Infantry Division, United States Army
Correctness: incorrect

Question: What wine region is Finger Lakes AVA a part of?
Ground truth: [”New York wine”]
Prediction: Finger Lakes AVA
Correctness: incorrect

Question: question
Ground truth: gold answer
Prediction: generated answer
Correctness:

Table 16: Prompt used for LLM-based accuracy evaluation.

G Additional Results

G.1 Reference Retrieval Augmented QA Accuracy

Table 18 shows retrieval augmented QA performance for the five QA models on the devel-
opment and test sets of our six tasks. We report accuracy based on token overlap (Acc) as
computed in previous work, i.e., whether the gold answer is contained in the generated
answer (Mallen et al., 2023; Asai et al., 2024; Xie et al., 2024) and accuracy using an LLM
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GEMMA2-9B GEMMA2-27B
NQ TQA WebQ SQuAD PopQA RefuNQ AVG NQ TQA WebQ SQuAD PopQA RefuNQ AVG

PPL 0.64 0.62 0.53 0.56 0.45 0.50 0.55 0.61 0.61 0.53 0.57 0.52 0.54 0.56
Passage Utility 0.77 0.80 0.71 0.74 0.90 0.71 0.77 0.74 0.8 0.69 0.76 0.90 0.72 0.77

LLAMA-3.1-8B MISTRAL-7B-V0.3
NQ TQA WebQ SQuAD PopQA RefuNQ AVG NQ TQA WebQ SQuAD PopQA RefuNQ AVG

PPL 0.69 0.78 0.67 0.67 0.65 0.68 0.69 0.64 0.71 0.59 0.64 0.62 0.68 0.65
Passage Utility 0.74 0.80 0.71 0.78 0.91 0.75 0.78 0.75 0.77 0.70 0.78 0.88 0.78 0.78

Table 17: AUROC values for the Passage Utility and perplexity baseline on individual
passages on the six test sets (NQ, TQA, WebQ, SQuAD, PopQA, and RefuNQ).

NQ TQA WebQ SQuAD PopQA RefuNQ
Development Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM

GEMMA2-9B 0.48 0.66 0.74 0.80 0.46 0.66 0.38 0.60 0.51 0.52 — —
GEMMA2-27B 0.48 0.66 0.75 0.81 0.49 0.67 0.38 0.60 0.52 0.52 — —
LLAMA-3.1-8B 0.48 0.62 0.71 0.77 0.53 0.64 0.39 0.57 0.51 0.49 — —
MISTRAL-7B-V0.3 0.48 0.62 0.72 0.76 0.52 0.69 0.37 0.58 0.53 0.51 — —

NQ TQA WebQ SQuAD PopQA RefuNQ
Test Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM

GEMMA2-9B 0.49 0.65 0.74 0.80 0.40 0.66 0.43 0.60 0.50 0.52 0.26 0.40
GEMMA2-27B 0.48 0.65 0.76 0.81 0.41 0.66 0.42 0.61 0.51 0.53 0.26 0.39
LLAMA-3.1-8B 0.49 0.61 0.71 0.77 0.44 0.63 0.43 0.58 0.50 0.49 0.27 0.36
MISTRAL-7B-V0.3 0.49 0.62 0.72 0.77 0.47 0.66 0.41 0.58 0.51 0.50 0.26 0.35

Table 18: QA model performance (with |R| = 5) on the development and test sets. We report
token- and model-based accuracy (Acc and AccLM). AccLM is computed by Qwen2-72B-
Instruct.

as a judge (AccLM). Note that AccLM is much higher than Acc across the board, which
highlights the importance of using a better accuracy metric, especially when the target QA
models are not fine-tuned.

G.2 Results on Individual Passage Utility Prediction

Beyond using Passage Utility to estimate uncertainty in retrieval augmented QA, we evalu-
ate how it performs on its own. Table 17 shows AUROC scores when using Passage Utility
to predict accuracy for individual passages. We evaluate on the same samples from the test
sets in Section 5 and Table 1 but per passage. We also include a perplexity baseline (PPL).
Overall, results in Table 17 follow a similar pattern as those in the QA setting with top-5
passages (Table 1). Across the board, Passage Utility demonstrates strong performance in
predicting the usefulness of individual passages. Moreover, these results highlight that the
quality of uncertainty estimation strongly depends on the quality of individual Passage
Utility predictions.

G.3 Detailed Uncertainty Estimation Results

Table 19 shows AURAC scores on the test sets. Table 20 shows the performance of uncer-
tainty quantification approaches on the development set. We report AUROC and AURAC.
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GEMMA2-9B GEMMA2-27B
NQ TQA WebQ SQuAD PopQA RefuNQ NQ TQA WebQ SQuAD PopQA RefuNQ

PPL 0.69 0.84 0.63 0.57 0.56 0.45 0.67 0.78 0.63 0.62 0.56 0.45
p(true) 0.75 0.85 0.71 0.63 0.71 0.53 0.76 0.89 0.73 0.67 0.70 0.54
Regular Entropy 0.70 0.84 0.63 0.59 0.57 0.46 0.69 0.79 0.64 0.61 0.58 0.45
Semantic Entropy 0.71 0.85 0.64 0.65 0.64 0.51 0.69 0.81 0.67 0.63 0.61 0.50
Passage Utility 0.76 0.90 0.72 0.74 0.73 0.64 0.72 0.88 0.73 0.74 0.73 0.64

LLAMA-3.1-8B MISTRAL-7B-V0.3
NQ TQA WebQ SQuAD PopQA RefuNQ NQ TQA WebQ SQuAD PopQA RefuNQ

PPL 0.73 0.87 0.71 0.68 0.69 0.54 0.67 0.83 0.66 0.66 0.61 0.54
p(true) 0.76 0.89 0.75 0.70 0.71 0.59 0.71 0.86 0.70 0.69 0.65 0.56
Regular Entropy 0.73 0.87 0.72 0.70 0.69 0.56 0.67 0.84 0.69 0.65 0.62 0.51
Semantic Entropy 0.71 0.87 0.71 0.70 0.67 0.54 0.68 0.85 0.71 0.69 0.66 0.51
Passage Utility 0.74 0.87 0.73 0.73 0.71 0.65 0.72 0.87 0.71 0.75 0.71 0.66

Table 19: AURAC values for QA models based on GEMMA2-9B/27B, LLAMA-3.1-8B, and
MISTRAL-7B-V0.3 on Natural Questions (NQ), TriviaQA (TQA), WebQuestions (WebQ),
SQuAD, PopQA, and RefuNQ test sets.

H Examples of False Positives and Negatives

Tables 21–24 illustrate the working of Passage Utility for answer uncertainty estimation.
As we report AUROC scores, we do not set any correct/incorrect decision threshold; for
the purpose of this discussion, we assume a decision point at 0.5 and analyze clear success
and failure cases. For each example, we show the question, gold, and generated answers in
the top block. Then, we show three retrieved passages with their estimated Passage Utility
and a final block with ten sampled answers, their grouping into clusters, and the Cluster
Assignment entropy.

Table 21 shows an example for a SQuAD question and the LLAMA-3.1-8B QA model. In
this case, the QA model correctly answers and the Passage Utility estimate is high (i.e.,
indicating the answer is correct). Table 22 illustrates a case where LLAMA-3.1-8B’s answer
is incorrect and all Passage Utilities are very low (i.e., indicating the answer is incorrect).
The example from NQ in Table 23 shows a case where all Passage Utilities are low but the
QA model (GEMMA2-9B) answers correctly. The first passage is not useful, the second does
not explicitly mention the answer but still primes the QA model to answer correctly, while
the third passage mentions the answer.

In Table 24, Passage Utility scores are high estimating a correct answer for the TQA test
question; however, GEMMA2-9B answers with the incorrect magazine name. Note that
none of the passages corresponds to the National Geographic magazine but have high token
overlap with the question (in particular the first and second passages).
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AUROC AURAC
GEMMA2-9B NQ TQA WebQ SQuAD PopQA NQ TQA WebQ SQuAD PopQA
PPL 0.61 0.52 0.58 0.66 0.56 0.67 0.78 0.67 0.65 0.52
MSP 0.64 0.60 0.64 0.71 0.61 0.69 0.80 0.69 0.67 0.56
PMI 0.53 0.46 0.52 0.50 0.48 0.64 0.75 0.64 0.57 0.50
p(true) 0.70 0.71 0.66 0.73 0.83 0.72 0.84 0.70 0.69 0.71
Regular Entropy 0.64 0.54 0.60 0.70 0.58 0.69 0.78 0.68 0.67 0.54
Cluster Assignment 0.68 0.65 0.65 0.70 0.68 0.71 0.82 0.70 0.67 0.60
Semantic Entropy 0.67 0.69 0.64 0.72 0.69 0.71 0.84 0.69 0.68 0.61
AvgAnsLen 0.61 0.64 0.65 0.63 0.68 0.68 0.83 0.71 0.65 0.61
Retriever Score 0.53 0.62 0.53 0.67 0.64 0.65 0.82 0.63 0.67 0.61
Passage Utility 0.72 0.84 0.75 0.85 0.85 0.75 0.89 0.77 0.77 0.71

AUROC AURAC
GEMMA2-27B NQ TQA WebQ SQuAD PopQA NQ TQA WebQ SQuAD PopQA
PPL 0.61 0.56 0.55 0.63 0.53 0.68 0.79 0.65 0.67 0.52
MSP 0.64 0.66 0.59 0.67 0.60 0.70 0.82 0.67 0.69 0.56
PMI 0.51 0.52 0.56 0.54 0.56 0.64 0.78 0.67 0.62 0.56
p(true) 0.76 0.73 0.69 0.69 0.79 0.78 0.84 0.74 0.71 0.70
Regular Entropy 0.65 0.53 0.56 0.64 0.53 0.71 0.78 0.66 0.67 0.52
Cluster Assignment 0.66 0.67 0.59 0.66 0.66 0.71 0.82 0.67 0.68 0.60
Semantic Entropy 0.64 0.67 0.59 0.68 0.66 0.69 0.82 0.68 0.69 0.60
AvgAnsLen 0.63 0.68 0.65 0.60 0.69 0.69 0.83 0.72 0.66 0.61
Retriever Score 0.56 0.60 0.51 0.69 0.65 0.67 0.81 0.64 0.71 0.62
Passage Utility 0.73 0.75 0.72 0.84 0.87 0.75 0.86 0.75 0.78 0.73

AUROC AURAC
LLAMA-3.1-8B NQ TQA WebQ SQuAD PopQA NQ TQA WebQ SQuAD PopQA
PPL 0.75 0.78 0.68 0.75 0.81 0.76 0.85 0.71 0.71 0.68
MSP 0.77 0.80 0.71 0.76 0.85 0.76 0.85 0.72 0.72 0.70
PMI 0.55 0.52 0.48 0.54 0.58 0.64 0.73 0.60 0.61 0.53
p(true) 0.80 0.86 0.72 0.82 0.85 0.78 0.87 0.74 0.75 0.71
Regular Entropy 0.77 0.80 0.69 0.76 0.83 0.76 0.85 0.71 0.72 0.69
Cluster Assignment 0.75 0.83 0.69 0.75 0.82 0.75 0.85 0.71 0.71 0.67
Semantic Entropy 0.74 0.83 0.70 0.74 0.81 0.75 0.86 0.72 0.71 0.68
AvgAnsLen 0.73 0.73 0.69 0.69 0.84 0.73 0.82 0.71 0.67 0.69
Retriever Score 0.58 0.63 0.54 0.68 0.66 0.65 0.79 0.62 0.66 0.60
Passage Utility 0.78 0.85 0.74 0.82 0.86 0.75 0.87 0.75 0.75 0.71

AUROC AURAC
MISTRAL-7B-V0.3 NQ TQA WebQ SQuAD PopQA NQ TQA WebQ SQuAD PopQA
PPL 0.66 0.70 0.60 0.63 0.66 0.69 0.84 0.72 0.63 0.63
MSP 0.70 0.75 0.65 0.71 0.77 0.70 0.85 0.73 0.68 0.67
PMI 0.38 0.33 0.42 0.42 0.30 0.53 0.68 0.62 0.52 0.39
p(true) 0.72 0.82 0.71 0.75 0.74 0.71 0.87 0.76 0.71 0.64
Regular Entropy 0.67 0.71 0.63 0.66 0.68 0.69 0.85 0.73 0.66 0.63
Cluster Assignment 0.72 0.81 0.68 0.73 0.76 0.71 0.87 0.75 0.68 0.66
Semantic Entropy 0.72 0.80 0.68 0.73 0.76 0.71 0.87 0.76 0.69 0.66
AvgAnsLen 0.66 0.75 0.65 0.68 0.81 0.69 0.85 0.73 0.67 0.70
Retriever Score 0.55 0.63 0.55 0.65 0.68 0.63 0.81 0.67 0.64 0.63
Passage Utility 0.76 0.81 0.75 0.85 0.85 0.74 0.87 0.78 0.75 0.71

Table 20: Answer uncertainty estimation for QA models GEMMA2-9/27B, LLAMA-3.1-8B,
and MISTRAL-7B-V0.3 on NQ, TQA, WebQ, SQuAD, and PopQA development sets. We
report AUROC and AURAC.
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Question: How many platforms does Manchester Oxford Road have?
Generated Answer: Four through platforms and one terminating bay platform.
Gold Answer: 5.

Originally one, later expanded.

Manchester Oxford Road railway station. Gloucester Street (now Whitworth Street West) to reach their north
front. There was a single platform on the north side of the line through to Manchester London Road (now
”Manchester Pic adilly”) and a second platform on a west-facing siding. To allow for extra trains in connection
with the Manchester Art Treasures Exhibition in 1857, extra platforms and sidings were bui lt, but afterwards
removed. A meeting of MSJAR contract ticket holders in 1863 included in its list of complaints the want of
punctuality ”especially as at Oxford Road station there is only one platform used for both passengers and
milk”. -0.42

Twelve terminating, two through.

Transport in Manchester. platforms are planned as part of the Northern Hub project however in 2017 the
construction was not confirmed. At present there are twelve terminating platforms but just two through
platforms. Congestion is common at peak times and trains often incur delays for following trains down the
line at Oxford Road. The new proposals will provide up to 700 more trains per day with space for 44 million
more people to travel by train each year. Victoria station has undergone a series of upgrades. The station was
rated as the worst in the UK following a 2009 study and plans for -0.26

Five platforms.

Manchester Oxford Road railway station. Manchester Oxford Road railway station is a railway station in
Manchester, England, at the junction of Whitworth Street West and Oxford Street. It opened in 1849 and was
rebuilt in 1960. It is the second busiest of the four stations in Manchester city centre. The station serves the
southern part of Manchester city centre, the University of Manchester and Manchester Metropolitan University,
on the line from westwards towards Warrington, Chester, Llandudno, Liverpool, and Blackpool. Eastbound
trains go beyond Piccadilly to , and . The station consists of four through platforms and one terminating bay
platform. 1.34

[’Four through platforms and one terminating bay platform.’, ’Four through platforms and one terminating
bay.’, ’Four through platforms and one terminating bay platform.’], [’Four through and one terminating.’, ’Four
through platforms and one terminating bay.’, ’Four through and one bay.’], [’Five platforms.’, ’Five platforms.’,
’Five platforms.’, ’Five platforms.’] 1.09

Table 21: True negative example (from NQ development set): Passage Utility predicts the
right answer as well as the QA model (GEMMA2-9B).
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Question: Which company was targeted by the NAACP for not having fair practices?
Generated Answer: Target Corporation.
Gold Answer: Lockheed Aircraft Corporation.

Target Corporation.

Target Corporation. of Colored People has repeatedly given Target failing grades on its annual Economic
Reciprocity Initiative report card, a measure of the company’s “commitment to the African-American citizenry”.
In 2003 and 2005, the NAACP has rated Target an “F” on this report; in 2004, Target was rated a “D-”. In
2006, when Target was asked why it didn’t participate in the survey again, a representative explained, “Target
views diversity as being inclusive of all people from all different backgrounds, not just one group.” In February
2006, the National Federation of the Blind (NFB) filed a class action [cont.] -2.64

None, the NAACP was involved in the Duke lacrosse case.

Reactions to the Duke lacrosse case. formed an opinion on the case. North Carolina NAACP Legal Redress
Chair, Al McSurely, explained that “The NAACP stands for fair play for all parties, zealous investigation and
deep concern for the survivors of racist/sexist attacks.” At the same time, some have criticized the NAACP
for making statements that portrayed the players as racist despite evidence to the contrary, using the case to
promote the group’s cause, and implying guilt. McSurely stated that “[w]ithin five minutes, the men threatened
the women with racial and misogynist verbal assaults, [cont.] -2.77

Philadelphia Transit Company (PTC).

Philadelphia transit strike of 1944. (PRTEU), Frank Carney, proved to be equally reticent and claimed that he
was not authorized by the union members to consider a request to allow promotions of black employees. The
black PTC employees enlisted the help of the NAACP and started lobbying the federal authorities, particularly
the Fair Employment Practices Commission (FEPC), to intervene. The Fair Employment Practices Commis-
sion, created by an executive order of the President in 1941, was charged with ensuring non-discrimination
employment practices by government contractors. [cont.] -2.60

[’Target.’], [’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’, ’Target
Corporation.’, ’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’], [’Target Corporation and
the National Federation of the Blind filed a lawsuit against Michigan.’] 0.33

Table 22: True positive example (from SQuAD development set): Passage Utility predicts
the answer provided by the QA model (LLAMA-3.1-8B) which is incorrect.

37



Published in TMLR (09/2025) and presented as a conference paper at COLM 2025

Question: What do Alfred Newman, John Williams, Johnny Green, Andr Previn, John Barry
and Alan Menken have in common?
Generated Answer: They are all Oscar-winning film composers.
Gold Answer: Winning the Academy award for Best Original Score.

They all won multiple Academy Awards for film scores.

Alan Menken. his other film musicals were also nominated: Alan Menken Alan Irwin Menken (born July 22, 1
949) is an American musical theatre and film score composer and pianist. Menken is best known for his scores
for films produced by Walt Disney Animation Studios. His scores for ”The Little Mermaid” (1989 ), ”Beauty
and the Beast” (1991), ”Aladdin” (1992), and ”Pocahontas” (1995) have each won him two Academy Awards.
He also composed the scores for ”Little Shop of Horrors” (1986), ”Newsies” (1992), ”The Hunchback of Notre
Dame” (1996), ”Hercules” (1997), ”Home on the Range” (2004), ”Enchanted” (2007), ”Tangled” (2010), and
”Sausage Party” (2016) -2.22

They are all prolific Oscar winners in music categories.

Alan Menken. hi s work on musical theatre works for Broadway and elsewhere. Some of these are based on
his Disney films, but other stage hits include ”Little Shop of Horrors” (1982), ”A Christmas Carol” (1994)
and ”S ister Act” (2009). Menken has collaborated with such lyricists as Howard Ashman, Tim Rice, Glenn
Slater, Stephen Schwartz and David Zippel. With eight Academy Award wins (four each for Best Score and
Best Song), Menken is the second most prolific Oscar winner in the music categories after Alfred Newman,
who has nine Oscars. He has also won eleven Grammy Awards, a Tony Award and other honors. -2.30

They are all Academy Award-winning composers.

Alan Menken. the Beast”, with the so ngs from the 1991 film and new material by Menken and Rice. ,
Menken is collaborating on writing new songs with Benj Pasek and Justin Paul for a live-action film version
of ”Aladdin” and is also working with Lin-Manuel Miranda on new music for a live-action film adaptation of
”The Little Mermaid”. Menken will also once again be working with Stephen Schwartz to write new songs for
D̈isenchanted̈, the s equel to ”Enchanted”. With eight Academy Awards (four each for best score and best
song), only composer Alfred Newman (nine wins) and Walt Disney (22 wins) have -2.31

[’They are all Academy Award-winning composers.’, ’They are all Academy Award-winning composers.’, ’They
are all Oscar-winning film composers.’, ’They are all Oscar-winning film composers.’], [’They are all multiple-
time Oscar winners for music.’, ’They are prolific Academy Award-winning composers.’], [’They are all multi-
Oscar winning film composers.’, ’They are all multiple Oscar-winning composers.’, ’They are prolific Oscar-
winning film composers.’], [’They are all prolific film music composers.’] 1.28

Table 23: False positive example (from TQA development set): Passage Utility predicts a
wrong answer whereas the prediction of the QA model (GEMMA2-9B) is correct.

38



Published in TMLR (09/2025) and presented as a conference paper at COLM 2025

Question: One Step Behind’ is a tribute act to which band?
Generated Answer: Furniture.
Gold Answer: North London Invaders.

Def L eppard.

Two Steps Behind. Two Steps Behind ”Two Steps Behind” is a 1993 song by English hard rock band Def
Leppard from their album ”Retro Active” and ”Last Action Hero” Soundtrack. It reached #5 on the ”Billboard”
Hot Mainstream Rock Tracks chart, and #12 on the B̈illboardḦot 100. Though the band did manage to chart
a few more songs in the following years, this is generally considered to be the band’s last major hit in the US.
In the 1993 ”Metal Edge” Readers’ Choice Awards, the song was voted ”Song of the Year” and ”Best Song
From a Movie Soundtrack.”. Def Leppard have 3.29

Def Leppard.

Two Steps Behind. and a live footage. The video was aired on August 19 93. Filipino-Chinese singer Rachelle
Ann Go covered the song for her 2007 album ”Obsession”. Two Steps Behind ”Two Steps Behind” is a 1993 song
by English hard rock band Def Leppard from their album ”Retro Active” and ”Last Action Hero” Soundtrack.
It reached #5 on the ”Billboard” Hot Mainstream Rock Tracks chart, and #12 on the ”Billboard” Hot 100.
Though the band did manage to chart a few more songs in the following years, this is generally considered to
be the band’s last major hit in the US. In the 2.42

Split Enz.

One Step Ahead (Split Enz song). unavailable to Australasian markets until 2007 when it became available on
iTunes). The video clip to ”One Step Ahead” has keyboardist Eddie Rayner performing ”Marche sur place”,
the pantomime illusion walk created by Decroux and Barrault (seen in the 1945 French film Child ren of
Paradise) that is the technique Michael Jackson would base his moonwalk on in 1983. One Step Ahead (Split
Enz song) ”One Step Ahead” is a 1980 song by New Zealand art rock group Split Enz from the ir studio album
”Waiata”. The song continued the group’s success in their move towards their own version of new wave -2.93

[’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’,
’Furniture’] 0

Table 24: False negative (from TQA development set): Passage Utility predicts a correct
answer, and the answer by the QA model (GEMMA2-9B) is wrong.
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