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Abstract

Language models (LMs) have achieved impressive accuracy across a variety
of tasks but remain vulnerable to high-confidence misclassifications, also re-
ferred to as unknown unknowns (UUs). These UUs cluster into blind spots
in the feature space, leading to significant risks in high-stakes applications.
This is particularly relevant for smaller, lightweight LMs that are more sus-
ceptible to such errors. While the identification of UUs has been extensively
studied, their mitigation remains an open challenge, including how to use
identified UUs to eliminate unseen blind spots. In this work, we propose
a novel approach to address blind spot mitigation through the use of in-
telligent agents – either humans or large LMs – as teachers to characterize
UU-type errors. By leveraging the generalization capabilities of intelligent
agents, we identify patterns in high-confidence misclassifications and use
them to generate targeted synthetic samples to improve model robustness
and reduce blind spots. We conduct an extensive evaluation of our method
on three classification tasks and demonstrate its effectiveness in reducing
the number of UUs, all while maintaining a similar level of accuracy. We
find that the effectiveness of human computation has a high ceiling but is
highly dependent on familiarity with the underlying task. Moreover, the
cost gap between humans and LMs surpasses an order of magnitude, as
LMs attain human-like generalization and generation performance while
being more scalable.

1 Introduction

Language models (LMs) have achieved remarkable accuracy across a wide range of predic-
tive tasks, but remain vulnerable to out-of-distribution data (Papernot et al., 2016; Wang
et al., 2019; Brown et al., 2020). Small, lightweight LMs – while easier to train and run on
limited hardware, and therefore favored in domain-specific applications – are especially
prone to UUs due to their reduced robustness (Wang et al., 2022; Du et al., 2023). Larger
LMs, although generally more robust, require significant computational resources for both
training and inference, limiting their usability (Touvron et al., 2023). This vulnerability often
leads to prediction errors, including in high-stakes applications such as suicide preven-
tion (Large et al., 2017) and criminal justice sentencing (Crawford, 2016), where reliable and
unbiased predictions are critical. A particularly challenging class of errors, referred to as
unknown unknowns (UUs), occurs when the model confidently misclassifies an input as the
incorrect label (Attenberg et al., 2015). These UUs tend to cluster into blind spots in the feature
space, areas where the model consistently produces high-confidence misclassifications due
to biases in the training data (Lakkaraju et al., 2017; Liu et al., 2020). On the left side of
figure 1 we show an example of a mispredicted label at a high confidence, resulting in a UU,
that forms part of a blind spot.

The identification of UUs and blind spots has been extensively studied (Attenberg et al.,
2015; Bansal & Weld, 2018; Vandenhof, 2019; Liu et al., 2020), including approaches involving
human oversight to aid in detection (Cabrera et al., 2021; Han et al., 2021). Mitigating blind
spots – especially how to move from identified blind spots to unseen ones – remains an
unresolved challenge. Simple approaches to tackling only already discovered blind spots,
such as relabeling previously identified UUs and using them for additional training (Han
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Sample:
I'm honestly so sad, 
you know. Been 
feeling like this for a 
long time [...]. 

Perturbed sample:
I'm honestly so 
dejected, you know. 
Been feeling like this 
for a long time [...].

Predicted label: 
Positive @ 0.94 
confidence
 
Wrong prediction? 
High confidence?
Outcome → UU

Abstraction 
Hypothesis

[...] model's sensitivity to 
less common word 
choices, such as 
substituting ‘sad’ with 
‘dejected’ [...]

Extrapolation 
Hypothesis

[...]  model's sensitivity 
to the inclusion of the 
uncommon word 
‘despairing’, deviating 
from familiar syntactic 
patterns present in the 
training data.

Unknown Unknown

Abstraction 
Sample

“Dejected doesn't even 
begin to describe my 
state of mind. Every day 
feels like there's no end 
in sight.”

Extrapolation 
Sample

“The despairing farmers 
watched as their crops 
withered under the 
relentless drought, 
wondering how they 
would survive the 
coming winter.”

Figure 1: In a sentiment classification task, we begin with a UU resulting from a perturbation –
denoted by a cross in the feature space. This UU is then used to generate an initial hypothesis
via abstraction through human computation or an LM. This abstraction hypothesis can
then either be used to generate a synthetic samples that target the existing blind spot or
to generate a new hypothesis via extrapolation, which in turn is then used to generate
synthetic samples targeting an unseen blind spot.

et al., 2021), do not scale and fall short of ensuring a holistic reduction in blind spots. Thus
the only blind spots of the model that can be illuminated using such reactive approaches
are those that correspond to seen data, with those that correspond to unseen data remaining
out of reach.

In this paper, we introduce an agent-in-the-loop workflow that proactively mitigates blind
spots of LMs by employing intelligent agents – either humans or large LMs – to characterize
blind spots and subsequently generate targeted synthetic data. We pose that the key
to mitigating these blind spots lies in the generalization abilities of the agent, allowing
them to hypothesize patterns of discovered UUs and similarities between seen and unseen
UUs using prior knowledge (Gluck et al., 2011; Banich & Caccamise, 2010; Allaway &
McKeown, 2020). To this end, we guide agents to formulate these hypotheses in natural
language, either describing the found blind spot consisting of discovered UUs (abstraction)
or reasoning about undiscovered blind spots (extrapolation), as is shown in figure 1. Using
these hypotheses, we guide agents toward the generation of synthetic samples targeted at
blind spots, improving the robustness of LMs through subsequent retraining by reducing the
number of high-confidence misclassifications without sacrificing overall predictive accuracy.
Our workflow is designed to flexibly integrate intelligence from both humans and LMs,
with specific mechanisms to incorporate human computation or LMs. Additionally, the
workflow can incorporate existing adversarial attack methods to proactively illuminate
blind spots, further enhancing its adaptability and effectiveness.

Our workflow proves to be a viable means of distilling knowledge from intelligent agents
to small LMs, making them more robust while maintaining their lightweight advantages.
Through our comprehensive experiments, we find that our method is capable of substantially
reducing the number of high-confidence misclassifications without decreasing accuracy. On
average, we are able to reduce the number of UUs by 19.08%. Further, we show that for our
method LMs are more effective overall than human agents, achieving a 22.37% reduction
in UUs compared to a 15.78% reduction when using human-generated data. Additionally,
LM-generated data are far more economical, making them a more scalable solution for
improving the robustness of small models. Finally, we observe that humans surpass LMs
in certain tasks, particularly those that align more closely with human intuition due to
participants’ greater familiarity with them.
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2 Agent-in-the-loop targeted data generation

Our proposed approach to blind spot mitigation involves engaging a human or LM in
three tasks: hypothesis generation via abstraction, hypothesis generation via extrapolation, and
synthetic sample generation. These tasks are designed to characterize and mitigate blind spots,
ultimately reducing high-confidence misclassification. The workflow is schematically illus-
trated in figure 1. The human computation component of our study is implemented through
a survey study, the details of which are provided in appendix A, while the equivalent LM
prompts are given in appendix B.

2.1 Problem formulation

For UU discovery, let the dataset be D = {(x1, y1), ..., (xn, yn)}, where x is the original text
sample and y the original ground truth label. Without having access to y, a predictive model
θ is tasked with generating a label prediction yp = θ(x) at a confidence c ∈ [0, 1]. Formally, a
UU occurs when (1) θ predicts the wrong label yp ̸= y and (2) the prediction is made with
high confidence c ≥ τ.

In this work, in addition to dealing with the blind spots that naturally occur in models
as a result of training, we make use of adversarial UU discovery, where we increase the
number of misclassifications by introducing perturbations. For this, a black-box adversarial
perturbation model G generates perturbed samples x̄ = G(x), where x̄ ̸= x. The model
θ is then used to predict new labels y′i = θ(x̄i) at a confidence c. The resulting perturbed
dataset, denoted P , consists of the new samples and predicted labels (x̄, y′). If a perturbation
occurs, there is an additional requirement for a misclassification to be considered a UU: (3)
x̄, regardless of its label indicated by θ, maintains the same underlying true label y as x post
perturbation.

Given a predictive model θ trained on a dataset D, our objective is to mitigate UUs produced
by θ. To systematically reduce high-confidence misclassification, we seek to identify patterns
in discovered UUs and generate targeted synthetic data {xs, ys} for a set of UUs, where
xs is the synthetic sample and ys represents the corresponding ground truth label for the
synthetic sample. This data is then used to further train θ and thus reduce the blind spots
present.

2.2 Generalization via hypothesis creation

For UU mitigation, we employ intelligent agents (humans or large LMs) to generalize from
identified UUs to create hypotheses in natural language regarding the underlying causes of
these UUs. As we use perturbations, such hypotheses are based on pairs of original and
perturbed samples, (xi , yi) ∼ D and (x̄i , y′i) ∼ P . Humans are adept at using sparse data to
generalize (Lake et al., 2015), and this task exploits that capability by focusing on subsets
of UUs. Each hypothesis describes the shared characteristics that explain why certain UUs
occur and how these characteristics might generalize to other, unseen UUs. The goal is not
merely to explain individual failure cases but to construct hypotheses that address multiple
UUs clustering together into a blind spot. In doing so, we can illuminate patterns within
the feature space that the model is consistently misclassifying. To this end, we pursue two
distinct but complementary strategies: abstraction and extrapolation.

Abstraction Abstraction involves generating a hypothesis on why a specific UU occurred
that generalizes across a set of closely related UUs, revealing underlying patterns within
a blind spot. In this step, the intelligent agent is provided with an original sample (xi , yi)
and, if adversarial perturbations are used, its perturbed counterpart (x̄i , y′i). Then the
agent is tasked with reasoning abstractly about the factors leading to this UU. Specifically,
we instruct them to consider whether these factors involve semantics, syntax, specific
words, or something else in the samples that could be the cause of the high-confidence
misclassification. This is to guide the agent to identify what most likely contributes to
the UU without prescribing rigid criteria, leaving room for creative thinking and allowing
the agent to explore unforeseen or nuanced factors. The hypothesis is in natural language
and should generalize across other UUs that share these characteristics, expanding our
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understanding of the particular blind spot the UU corresponds to. Compared to a mitigation
approach that only makes use of a simple reactive relabeling of found UUs, our method
comes with the additional advantage that it builds up a corpus of human-interpretable error
reports on seen errors of the classification model.

Extrapolation Extrapolation extends the process of hypothesis creation beyond trying to
describe discovered blind spots, encouraging the agent to use existing hypotheses and
sample pairs (used during abstraction) to uncover new blind spots. This task emphasizes
extrapolation, asking the agent to hypothesize new failure modes – also in natural language
– that differ from those previously identified. Extrapolative thinking has previously been
shown to be a human strong suit (Bartlett, 1958). By ensuring that the new hypotheses are
dissimilar from those used for abstraction, we aim to discover new regions in the feature
space where the model may be prone to high-confidence misclassification. To avoid the
agent overextrapolating, we specifically instruct them to focus on the same topic but to
reason about whether a different factor from semantics, syntax, specific words might be
responsible that was not mentioned in the abstraction hypothesis. In this step, we present
only human-generated hypotheses to human participants and vice versa. An example of
hypothesis generation via abstraction and extrapolation is shown in figure 2.

2.3 Synthetic sample generation

Once hypotheses have been generated via abstraction or extrapolation, the agent is tasked
with generating synthetic samples. These synthetic samples must align with the structure
and context of the original dataset while reflecting the characteristics of the generated
hypotheses. For instance, if the dataset consists of movie reviews, the synthetic samples
should maintain the form and tone of movie review-related text. The goal of this step is
to create new data points that correspond to the blind spots identified during hypothesis
generation. These synthetic samples are added to the training dataset, resulting in a dataset
that is extended for each synthetic sample and its corresponding label E = D ∪ {xs

i , ys
i },

where the label is provided by the agent. By incorporating these new samples into training,
we aim to enhance the robustness of the predictive model θ by reducing its susceptibility to
high-confidence misclassifications. The sample generation process is uniform, regardless
of whether the hypothesis was obtained through abstraction or extrapolation. Humans
generate samples based on human-created hypotheses, and LMs do the same for LM-
generated hypotheses. An example of this type of sample generation from human and LM
agents for abstraction and extrapolation is shown in figure 2.

3 Experimental setup

In this section, we present an overview of our experimental design. A schematic illustration
of the workflow can be found in figure 3. First, we obtain our initial set of UUs of the fine-
tuned classification model from the validation set. Following this, we characterize the blind
spots corresponding to these UUs by making the intelligent agent perform generalization as
described in section 2, culminating in new synthetic data that we use to retrain the model.
Finally, we evaluate this retrained model with respect to accuracy and UU count. As a pre-
liminary study, to verify that our method does indeed address blind spots, we successfully
demonstrate that it is possible to artificially create blind spots by hand (i.e., ground truth
blind spots) in a model and then illuminate these using our approach in appendix C. In our
main study, our experiments instead address mitigating both natural blind spots that occur
during normal model training and those created by adversarial attacks. For this, we do not
have access to the ground truth blind spots and as such just have indirect evidence that
some blind spots are illuminated as the number of occurring UUs is decreased.

3.1 Datasets, models, and perturbations

To evaluate the generality and effectiveness of our approach, we select a di-
verse set of classification tasks, each representing varying levels of task complexity.
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Figure 3: Workflow: (A) Obtain UUs from the vali-
dation set on the original finetuned model; (B) use
UUs to extend the training data via generalization
(figure 1) and thus obtain a more robust model; (C)
evaluate this retrained model. Adversarial pertur-
bations in dotted box are optional.

Specifically, we focus on senti-
ment analysis (SA) using the IMDB
dataset (Maas et al., 2011), semantic
equivalence (SE) using the MRPC
dataset (Dolan & Brockett, 2005), and
natural language inference (NLI) using
the QNLI dataset (Rajpurkar et al.,
2016). The statistics of the dataset for
each task are shown in table 1. For
blind spot mitigation, we use the val-
idation set to obtain our UUs that are
then used to perform the hypotheses
generalization. These hypotheses are
then used in turn to generate synthetic
samples and extend the training set,
as shown in figure 3. We limit the
number of hypotheses derived from
each of abstraction and extrapolation
to 1% of the training set size, leading
to an additional 73, 500, and 2095
training samples after applying our
method for MRPC, IMDB, and QNLI,
respectively. These values are treated
as hyperparameters and are chosen
to balance computational efficiency
and effectiveness. We leave further
optimization of this split between abstraction- and extrapolation-derived hypotheses to
future work. We employ two classification models in our experiments, finetuned for each
classification task: BERT (bert-base-uncased) (Devlin et al., 2019) and Llama 2 7B (Touvron
et al., 2023), selected for their contrasting architecture and size. We choose BERT for its
known performance on sentence-level classification tasks and its low number of parameters,
while Llama 7B was chosen for its larger (but still manageable) scale and capability in
handling more complex language understanding tasks. GPT-3.5 Turbo is incorporated as
the teacher model to perform hypothesis and sample generation, as it is superior to both
classification models that we use.

In a black-box setting, where we assume no access to the model’s internal parameters,
we employ adversarial perturbation techniques to yield more UUs for our method to use.
Note that while perturbations aid proactive discovery of blind spots, they are not strictly
necessary to our overall approach. Perturbations are generated using TextAttack (Morris
et al., 2020), specifically with TextFooler (TF) (Jin et al., 2020) for word-level perturbations
and DeepWordBug (DWB) (Gao et al., 2018) for character-level perturbations. Using these
two methods, we cover a wide spectrum of adversarial attack types, revealing additional
blind spots. We focus on perturbations that maintain semantic integrity, ensuring that
the true underlying label remains consistent after perturbation. Manual inspection of
100 random perturbed samples revealed that none had a different underlying true label,
affirming that our perturbations are faithful.

3.2 Baseline

As a baseline, we use a reactive relabeling approach based on the previous work by Han
et al. (2021), where identified UUs are given a ground truth label, before being reintroduced
to the classification model for additional training. This method directly targets blind spots
by adding these correctly labeled samples to the extended set. While Han et al. (2021)
perform this reintroduction in smaller, iterative batches to identify more UUs, we pool all
relabeled UUs in a single batch, as we only concern ourselves with the mitigation of UUs
and assume that we have knowledge of whether a sample is a UU or not post classification.
This is similar to how we perform the retraining for our method. For a fair comparison, we
apply this baseline approach with the same budgetary constraints as our proposed method,
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Dataset Task #Classes #Train #Validation #Test

MRPC SE 2 3,668 408 1,725
IMDB SA 2 25,000 12,500 12,500
QNLI NLI 2 104,743 5,463 5,463

Table 1: Datasets used, including the task type, number of classes, and number of samples
in each of the test, validation, and training sets. Note the split of the original IMDB test set
into new validation and test sets.

with new samples making up 2% of the initial training set size. We pose that our method,
which uses hypotheses to synthesize new data, will outperform this method by uncovering
additional failure modes not captured by relabeling alone.

3.3 Implementation

Following Lakkaraju et al. (2017), we set the confidence threshold for determining high-
confidence misclassifications to τ = 0.65. All BERT models were trained for 10 epochs, using
a learning rate of 2 × 10−4, and a batch size of 64. We fine-tune all Llama 7B models using
the Low-Rank Adaptation (LoRA) (Hu et al., 2021) method with the following configuration:
a LoRA scaling factor of 16, dropout of 0.1, and rank r = 64. The target modules are all
linear layers in the model, and no bias adjustment is applied. The training is performed
over 3 epochs, with a batch size of 8, and gradient accumulation set to 8 steps. We employ
AdamW (Loshchilov & Hutter, 2019) as our optimizer with β1 = 0.9 and β2 = 0.999. The
learning rate is set to 2 × 10−4 with a warmup ratio of 0.1, followed by a cosine decay. We
apply a maximum gradient norm of 0.3 to ensure stability during training and use a weight
decay of 0.001 to prevent overfitting.

The human computation component of our study is implemented through a survey study,
the details of which are provided in appendix A. A key procedural difference between
human and LM-based experiments is the number of examples provided. The human
participants receive two examples, while no examples are given to LMs (i.e., zero-shot).
This design choice aims to minimize guidance for the LM since few-shot prompting tends
to result in overly homogeneous samples, even when using higher temperature settings.
The LM prompts for the teacher model are given in appendix B. When prompting the
teacher model, we always ask it to explicitly give its reasoning, which we find not only
increases performance but also improves interpretability. To ensure the quality of human-
generated hypotheses and synthetic samples, we include attention checks (Oppenheimer
et al., 2009) in each survey to eliminate inattentive or low-effort responses. For both human-
and LM-generated hypotheses and samples, we implement automated quality checks for
this purpose. We do not focus on selecting the high-quality responses, but filter out bad-
faith ones such as repeated or nonsensical submissions. To be included, all text entries are
required to meet a minimum character threshold (charmin = 40) to ensure sufficient content.
Additionally, we employed BERTScore (Zhang et al., 2020) to automatically evaluate the
similarity of new samples against a reference set in the form of samples from the training
set. If the similarity score falls below a threshold of Smin = 0.5, the sample is discarded.

3.4 Evaluation metrics

We use two key metrics to assess the effectiveness of our approach and the comparative
approach. These include the accuracy of the model on the test set and the number of UUs
observed during evaluation. Accuracy provides a basic measure of model performance,
while the UU count reflects the model’s robustness and allows us to reason about the
prevalence of blind spots. Note that the accuracy we report is the accuracy of the model
before any perturbations are applied, while the number of UUs is post perturbation. Ideally,
our goal is to maximize accuracy while minimizing the number of UUs. Our evaluation
compares the performance of the original finetuned model with that of the models retrained
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BERT Llama 7B

TF DWB TF DWB

Acc. (%) ↑ UUs (#) ↓ Acc. (%) ↑ UUs (#) ↓ Acc. (%) ↑ UUs (#) ↓ Acc. (%) ↑ UUs (#) ↓
M

R
PC

Original Model 82.38 952 82.38 936 90.84 301 90.66 293
Relabelling Baseline 82.49 911 82.55 898 90.61 277 90.73 268
Hypothesis (LM) 81.57 851 82.23 882 89.86 149 89.73 164
Hypothesis (Human) 81.58 418 82.10 802 90.20 144 89.91 140

IM
D

B

Original Model 94.84 1882 95.40 1682 95.20 892 95.33 810
Relabelling Baseline 93.94 1732 94.26 1621 94.86 781 95.10 742
Hypothesis (LM) 95.40 1241 94.41 1448 94.96 604 95.13 689
Hypothesis (Human) 94.43 1518 95.74 1412 94.67 658 94.90 702

Q
N

LI

Original Model 89.88 1923 89.88 2597 90.08 879 90.72 952
Relabelling Baseline 88.24 1796 88.98 1907 89.90 856 90.60 929
Hypothesis (LM) 89.31 1536 89.21 1746 89.58 741 90.10 890
Hypothesis (Human) 89.42 2028 89.38 2325 89.16 857 89.73 924

Table 2: Results of the blind spot study across datasets for BERT and Llama 7B as classifica-
tion models. TF refers to the TextFooler perturbation method and DWB to DeepWordBug.
For accuracy (Acc.) a higher percentage is preferable, while for UUs a lower count is better.

on their respective extended dataset E . This allows us to quantify the impact of our approach
on mitigating blind spots and improving model robustness.

4 Results

In this section, we report the experimental results on the effectiveness of our proposed
method in reducing blind spots across the classification tasks. The results of our methods
configured with human- and LM-generated data as well as those of the baselines are shown
in table 2. Additionally, we compare human-generated samples to those produced by LMs
in terms of effectiveness, scalability, and ease of use.

4.1 Impact of synthetic samples

Observation 1: Our approach leads to a significant and consistent UU reduction across
tasks. As part of our evaluation, we find that our method successfully reduces UUs, with a
maximum reduction of 56.09% when using human computation on the BERT model with TF
for the MRPC task. LMs generally offer more consistent UU reductions, though performance
varies by task. On average, across perturbation methods and classification models, our
method with LM-based data generation reduced UUs by 23.43%, while human-based data
generation led to a reduction of 21.68%. Similarly, regardless of what type of agent generates
the data, our method achieves an average reduction in UUs of 35.71%, 21.27%, and 10.70%
for MRPC, IMDB, and QNLI, respectively. The only configuration where our method does
not reduce UUs is the BERT model on the QNLI dataset, where human-based retraining
with TF actually increases UUs by 5.46%. We elaborate on this in observation 3.

Observation 2: Relabeling of UU samples is effective but not as impactful. Simply
relabeling UU samples from the validation set and reintroducing them as the extended
set leads to a decrease in the number of UUs, albeit a more modest one compared to our
method. Relabeling achieves a decrease in UUs of 8.86% and 7.06% on average for BERT and
Llama 7B, respectively. This compares to the average decreases achieved by our method:
21.68% when using human-generated data and 23.43% when using LM-generated data This
confirms that only reactive illumination of blind spots using seen data is less effective than
our method, regardless of agent type.While the average decrease is lower, the relabeling
method is very consistent across tasks, as it is not dependent on an agent grasping the
task and delivering high quality data. Additionally, it is very cost effective as no human
computation or LM querying is necessary. The obvious limitation of this approach is that it
only scales to blind spots that have been discovered and therefore has very little transfer
learning potential, as it is unlikely that the found UUs will generalize to unseen UUs.

Observation 3: Human performance is very task dependent. We find that human-
generated samples may outperform LMs in tasks that align with human intuition. For
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tasks such as SE and SA – which are more intuitive to humans compared to NLI, as they
more closely resemble everyday tasks – human performance tends to be better, yielding
more significant reductions in UUs. In particular, on the MRPC dataset we see a greater
reduction in UUs using human-generated data, 35.38% and 52.19% on BERT and Llama
7B, respectively, when compared to when using LM-generated hypotheses and samples
8.21% and 47.31%. In less intuitive tasks such as NLI, humans can generate data of poor
quality, leading to a reduction in model robustness, which may even result in an increase in
UUs. When analyzing participants’ responses for QNLI, we find that several participants
did not fully grasp the natural language inference task, which was not the case for SE and
SA. Note that these are not purposefully low-effort responses and are therefore not filtered
out as described in section 3.3. This shows that irrespective of classification model, there is a
task-specific advantage of human computation compared to LM teacher models when there
exists a higher degree of familiarity with the task and vice versa. Although LMs provide
samples of acceptable quality consistently, rare but high-quality human responses, such as a
crowdworker correctly identifying that changing the date “June 15” to “John 15” referenced
a Bible verse – an insight that the LM missed – can significantly reduce UUs and thus be
more impactful. This suggests that while human-generated responses can have a higher
ceiling in certain contexts, LMs deliver more consistent results overall as incorrect responses
from just a few human participants can reduce the effectiveness of our method.

Observation 4: Accuracy does not decrease despite improved robustness. In terms of
accuracy, extending the training set with human- or LM-generated data did not have a
significant effect. Across tasks, accuracy fluctuations of the models with extended training
sets remain within ±1% compared to the original models. This contrasts with previous
findings that improvements in robustness often come at the expense of accuracy (Tsipras
et al., 2019). Detailed perturbation statistics are made available in appendix D, as well
as a visualization of prediction confidences for misclassified samples after perturbation.
We observe a reduction in high-confidence misclassifications, particularly at the highest
prediction confidences. Additionally, there is a clear reduction across the entire confidence
range towards lowering the classifier’s confidence in its misclassifications. This, in combina-
tion with our overall results, indicates that we improve the calibration of the classification
models.

4.2 Scalability and ease of use

Observation 5: Our method scales well per sample and by parameter count. Despite only
adding a small amount (2% for each task) of synthetic data relative to the total training set
size, we achieve significant results in the reduction of UUs. This indicates that our method
can scale to large datasets, as only a small number of synthetic samples relative to the total
dataset size are required have a significant impact in terms of improving robustness. We
study classification models that use a different architecture and have an order of magnitude
difference in size (110M parameters for BERT and 7B for Llama). Here, we find that models
with a lower number of parameters achieve a performance similar to that of large generative
LMs, with comparable accuracy on the IMDB and QNLI tasks, indicating that smaller models
may be more suitable for text classification tasks when considering their other advantages,
which corroborates previous findings (Yu et al., 2023). This is especially encouraging for use
cases where computational resources are limited or speed and transparency are critical.

Observation 6: Obtaining samples via LM is easier and more cost effective. When
considering the practical aspects of our study, significant insights emerge regarding the
costs and time involved in conducting human- and LM-based generalization experiments.
The human study, which included 168 participants, resulted in a total cost of $1072, with an
hourly compensation rate of $12 per participant. In contrast, the LM experiment incurred a
much lower cost of $46 for generating an equivalent number of generalizations and samples.
Although it is challenging to provide precise estimates, the data collection process via
human surveys also took substantially longer than the LM-based approach. This highlights
the fact that when using LMs, our method is far more cost-effective and generates data
almost instantaneously, in stark contrast to the considerable delays associated with human-
based study design and data collection. Thus, from a scalability perspective, the LM-based
procedure offers clear advantages, being both faster and less expensive. However, in certain
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high-stakes or specialized applications such as suicide prevention and criminal justice
sentencing, human involvement, including via a hybrid approach where human intuition
supplements the efficiency of LM-generated data, may be more advantageous. This is
especially true when considering that LM outputs come with no guarantees and may be
biased.

5 Related work

Unknown unknowns Attenberg et al. (2015) introduce the concept of querying humans
to find UUs in a game-like setting and show that there were patterns to the found UUs.
Vandenhof (2019) proposes an approach to identify UUs where human-interpretable de-
cision rules are learned to approximate how a model makes high-confidence predictions.
Crowdworkers then contradict these rules by finding an instance that would classify as a
UU. Cabrera et al. (2021) explore the use of crowdworkers to generate failure reports for
computer vision models to describe how or why the model failed. Han et al. (2021) propose
an approach where crowdworkers continuously extend a dataset with relabeled UUs, on
which the chosen model is iteratively trained. Instead, we go beyond simple relabeling and
characterize found blind spots and explore new, previously unseen blind spots. There are
also algorithmic approaches to finding UUs, such as Lakkaraju et al. (2017), who propose
utilizing an explore-exploit approach to find groups of UUs. Bansal & Weld (2018) extend
this by proposing a utility model that rewards the degree to which the found UUs cover a
sample distribution, thus encouraging the discovery of new blind spots. Instead, we do not
find the UUs algorithmically, but instead use an LM or crowdworkers to find existing UUs,
extrapolate from these to unseen UUs, and generate synthetic data targeting both of these.

Model calibration and robust training The concept of UUs and blind spots is connected
to model calibration (Guo et al., 2017; Minderer et al., 2021; Tian et al., 2023). A model
that is well-calibrated will have its prediction confidence aligned with the likelihood of the
correctness of the prediction and, as such, a model with blind spots is a poorly calibrated
model. In the case where the UUs are specifically generated through adversarial attacks,
illumination of model blind spots is also related to robust training. UUs that populate these
blind spots, when created by such attacks, may be identified as adversarial examples (Ribeiro
et al., 2018; Wallace et al., 2019; Wang et al., 2020). This underscores the relationship
between our proposed method and robust training practices with the aim of improving the
robustness of the model (Madry et al., 2018; Pang et al., 2021). Our method focuses not on
general robustness but rather on high-confidence misclassifications and is not limited to
just adversarial samples, as we consider UUs that occur naturally without perturbation as
well. Several approaches have been proposed to utilize synthetic data to expand training
sets (Puri et al., 2020; Claveau et al., 2021). He et al. (2022) explore few-shot prompting LMs
to generate task specific synthetic training data. Unlike prior work, we propose a method to
generate targeted synthetic data with the purpose of eliminating blind spots that lead to
high confidence misclassifications.

6 Conclusion

We propose a method to identify and mitigate blind spots in classification models by leverag-
ing human- and LM-generated generalizations, followed by synthetic sample generation to
target UUs and enhance model robustness. Our evaluation demonstrates that our method is
effective at addressing model blind spots and achieves a significant reduction in UUs across
datasets, while not altering the general performance of the model and therefore maintaining
accuracy. Our study sheds light on the notable task dependency of the human ability to
characterize blind spots and generate new data and how this ability compares to that of an
LM. Future work will focus on optimizing the balance between accuracy and robustness to
further enhance model performance.
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A User study for human computation

We use Prolific as a crowdsourcing platform for all our participants. Below, we present the
structure followed by all survey participants for the generalization user study, consisting
of an initial disclaimer, an instruction set, examples, and finally the questions. Here, we
use the abstraction and extrapolation assignments on the IMDB dataset as an example. The
workflow is very similar between the different generalization assignments and datasets
(MRPC, IMDB, or QNLI), with only slight differences in the wording between the surveys
to fit the task and dataset used, as they all present the crowd worker with some input
and result in plain text output. For the generation assignment, crowdworkers are asked to
perform the same steps, with relevant examples related to the structure of the dataset being
shown, before finally contributing usable samples based on shown hypotheses.

A.1 Abstraction on IMDB

Disclaimer Crowdworkers were shown an initial disclaimer to inform them that our govern-
ing ethics body sanctions this survey and to remind them not to share personal information:

• “Welcome to the Hypothesis Extrapolation Survey! Please carefully read the fol-
lowing: You are invited to participate in our research study. This study is fully
sanctioned by our governing ethics body, as is the handling and storing of the
resulting data. This research study aims to use your creativity and generalization
ability to come up with new abstractions. It will take you approximately 25 minutes
to complete. As with any online activity, the risk of a breach is always possible.
To the best of our ability, your answers in this study will remain confidential. We
will minimize any risks by making this survey completely anonymous. Therefore,
please do not provide any personal information anywhere. The anonymous results
might be shared publicly in the future. Participation in this study is entirely volun-
tary, and you can withdraw anytime. Feel free to contact us with any questions or
feedback you might have.”

Instructions Crowdworkers were then introduced to the specific task (SE, SA, or NLI) as
follows:

• “Please read the following examples carefully. All tasks in this survey are related
to a single task, sentiment analysis, which tests the sentiment of a sentence is
either positive or negative, applied to movie reviews. The goal here is to use your
creativity and ability to generalize to spot patterns and come up with new possible
samples. A fully worked-out example can be found below, with user-generated
text, similar to what you are expected to write, in italic and instructions bold. You
will receive all relevant instructions again when for each question.”

Examples Then, they were presented with two examples that match the dataset used, as well
as the task (abstraction, expansion, or generation), before being asked if they understood
the examples:

• “There is a sentence pair below, with one original sample (O) and a perturbed
one (P), which is similar but had some things changed (shown in double square
brackets). These changes may relate to a pattern, related to semantics, syntax,
specific words, or something else in the samples, that leads to the wrong True or
False label being predicted for semantic similarity.

• Example 1 – The two samples are:
O: There was an overarching [[story]] that was [[refusing]] to reveal itself to me. P:
There was an overarching [[narrative]] that was [[unable]] to reveal itself to me.
Formulate a hypothesis on what this pattern for O and P might be and enter it
below. Try to be specific when formulating a hypothesis.
The pattern that caused the wrong prediction may be related to the substitution of the word
””story”” with its synonym ””narrative””.
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• Example 2 – The two samples are:
O: Overall, I [[loved]] the cinematography of this through and [[through]]. P:
Overall, I [[looved]] the cinematography of this through and [[thr0ugh]].
Formulate a hypothesis on what this pattern for O and P might be and enter it
below. Try to be specific when formulating a hypothesis.
Several words have been misspelled in the samples, all related to the letter ””o””. Either
more letters are added ””oo”” or the letter is substituted with a number ””0”” that looks
similar, making it easy to misread.”

Main Questions Finally, the actual questions preceding the text entry field used for data
collection all have the same structure with the unique O and P sentences substituted in for
each question:

• “The two samples are:
O: {original sentence} P: {perturbed sentence}
Formulate a hypothesis on what this pattern might be and enter it below. Try to
be specific when formulating a hypothesis.”

B Used LM prompts

We specifically instruct the LM to split its hypothesis from its reasoning because, in our
experience, this leads to a clearer and more useful answer for further steps.

B.1 Abstraction prompt

• “There is a sentence pair below, with one original sample (O) and a perturbed
one (P), which is similar but had some things changed. These changes may relate
to a pattern, related to semantics, syntax, specific words, or something else in
the samples, that leads to them being the reason the sample is misclassified by a
classification algorithm. This misclassification is made at a high level of confidence.
The model is not trained on the two samples. The two samples relate to {task} and
are:
O: {sentence[0]}
P: {sentence[1]}
Formulate a hypothesis on what this pattern might be. Try to be specific when
formulating a hypothesis. Your response should always follow the format:
Hypothesis: {hypothesis}
Reasoning: {reasoning}”

B.2 Extrapolation prompt

• “There is a sentence pair, with one original sample (O) and a perturbed one (P),
which is similar but had some things changed. These changes may relate to a
pattern, related to semantics, syntax, specific words, or something else, that leads to
them being the reason the sample is misclassified by a classification algorithm. This
misclassification is made at a high level of confidence.
The model is not trained on the two samples. The two samples relate to {task}
There is an existing hypothesis regarding the samples, that may capture a pattern
related to semantics, syntax, specific words, or something else in the sample pair.
This pattern leads to a misclassification of the sample.
The hypothesis is: {hypothesis}
Formulate a new hypothesis regarding those sentence samples that is concerned
with the same topic but is applied to a different possible pattern that could also lead
to a misclassification. Try to be specific when formulating a new hypothesis. Your
response should always follow the format:
Hypothesis: {hypothesis}
Reasoning: {reasoning}”
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B.3 Generation prompt

• “There is a sentence pair, with one original sample (O) and a perturbed one (P),
which is similar but had some things changed. These changes may be related to a
pattern related to semantics, syntax, specific words, or something else that leads to
them being the reason the sample is misclassified by a classification algorithm. This
misclassification is made at a high level of confidence.
The model is not trained on the two samples.
A hypothesis has been formulated regarding the samples, that may capture a pattern
related to semantics, syntax, specific words, or something else in the sample pair.
These samples led to a classification algorithm misclassifying them at a high level
of confidence.
Given the samples and a previously generalized hypothesis, generate one new
sample made up of one or more sentences that relate to {task} and could have a
similar effect on the classification algorithm.
The new sample should be varied and detailed. Follow the logic laid out in the
given hypothesis and follow the format of the sample pair (O and P) exactly. Also
include whether the new sample should be given a (positive) or (negative) label for
the task: {task}.
The hypothesis is: {hypothesis}
Your response should always follow the format:
Sample: {sample}
Label: {label}
Reasoning: {reasoning}”

C Synthetic blind spots

We use the synthetic blind spot study akin to a sanity check for our approach. As such, com-
pared to the full natural blind spot study, we use only a single task, a simpler model architec-
ture, and make other simplifications to our mitigation process. We select an LSTM (Hochre-
iter & Schmidhuber, 1997) as our model of choice due to the absence of pretraining and
apply the TF perturbation method on the SA task. The LSTM used is the standard version
of the Bi-LSTM provided by Morris et al. (2020).

Original Retrain

Accuracy (%) Perturbation (%) UUs (#) Accuracy (%) Perturbation (%) UUs (#)

Clean 88.03 82.22 1725 88.03 82.21 784
Biased R 78.55 78.56 3785 78.61 78.58 2593
Biased P 75.10 75.02 4607 74.25 73.12 1201
Biased N 76.64 76.64 4394 77.38 77.35 845
Biased PN 74.17 73.94 9231 74.81 74.01 2331

Table 3: Results of synthetic blind spot study for accuracy, perturbation success rate, and
number of UUs before and after retraining for all LSTM model variants. The used perturba-
tion method is TF and the dataset is IMDB.

C.1 Blindspot creation and mitigation

To assess whether our method can tackle existing synthetic blind spots we perform a type
of Controlled Synthetic Data Check (Nauta et al., 2023). We create synthetic blind spots
by systematically excluding some data from training that have commonalities, namely
containing a positive or negative term according to lexica by Liu et al. (2005). Here, we
randomly subsample 600 of each as our selection of positive and negative terms, due to the
extensive nature of the lexica.

We create a false positive blind spot by removing samples from the train set using our
selection of negative terms, resulting in a negatively biased LSTM (N). Similarly, we create
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a false negative blind spot, resulting in a positively biased LSTM (P), as well as a blind
spot resulting from a selection of 50% randomly chosen terms from each, leading to a
positive/negative biased LSTM (PN). For comparison, we also include a randomly biased LSTM
(R), where samples were removed from the train set randomly to obtain a size comparable
to the P, N, and PN ones.1

After creating the synthetic blind spots through biasing, the authors perform the generaliza-
tion procedure and provide handcrafted hypotheses that precisely describe these, similar to
golden labels. To generate the new samples from our handcrafted hypotheses, we prompt
the teacher model to generate movie review-related sentences (to fit the chosen task) that
follow a given hypothesis. This was done in an attempt to simplify the procedure by taking
advantage of human strengths, generalization and extrapolative thinking, and LM strengths,
low-cost text generation, simultaneously.

C.2 Synthetic blind spot study results

The mitigation results of this human-LM approach for our Controlled Synthetic Data Check
can be seen in table 3. As can be seen in the first column of table 3, before retraining, the
overall test accuracy declines in line with the degree to which the train set is biased. Inter-
estingly, the percentage of successful perturbations by TF, i.e., the percentage of successful
label flips, closely follows the overall accuracy. This mirrors the findings of Tsipras et al.
(2019), that there is a strong relationship between high accuracy and brittleness – or a lack of
robustness. The number of occurring UUs as a result of the perturbation does not follow this
trend, instead increasing as the training data becomes more biased, as expected. This poses
an interesting optimization problem since the model becomes most robust in general terms,
i.e., the successful perturbation percentage falls, but simultaneously there is a significant
uptick in blind spots as the training sets become more biased.

The effect of retraining on the overall accuracy and perturbation success rate is minimal,
with accuracy changing by no more than ± 1% and perturbation success rate changing
no more than ± 2%. However, the number of found UUs decreases drastically due to
the retraining, with reductions of 73.93%, 80.77%, and 74.75% for the biased P, N, and
PN models, respectively. The clean and randomly biased models also show a reduction,
though less significant at 54.55% and 31.49%, respectively. These results confirm that our
method can be used to target synthetic blind spots found in biased models through the use
of hypotheses and generated instances, without significantly affecting the performance or
general robustness of the model.

D Perturbation statistics and visualization

MRPCO MRPCL MRPCH MRPCR IMDBO IMDBL IMDBH IMDBR QNLIO QNLIL QNLIH QNLIR

Original Accuracy (%) 82.38 81.57 81.58 82.49 94.84 95.40 94.43 93.94 89.88 89.31 89.42 88.24
Accuracy Under Attack (%) 9.80 17.40 12.99 10.42 10.18 10.44 19.21 10.22 8.91 11.67 14.89 9.97
Attack Success Rate (%) 71.83 64.87 68.29 69.65 88.46 93.18 63.85 85.34 87.35 86.80 78.84 84.92
Perturbed Words (%) 7.70 9.9 8.51 7.98 4.59 7.62 9.02 5.50 6.12 8.80 9.57 7.33
Words per Input 39.3 39.3 39.3 39.3 230.0 230.0 230.0 230.0 37.9 37.9 37.9 37.9
Avg. Number of Queries 51.40 68.62 55.17 57.86 185.24 184.94 198.31 186.37 49.38 51.27 56.11 53.27

Table 4: Perturbation statistics across datasets and models for attacks with TF using BERT.
Subscripts O, L, H, R denote the original, LM-retrained, human-retrained, and relabeled
models, respectively.

To add additional context to the perturbation performed, we supply the detailed attack
statistics across all performed perturbations. Specifically, we report Original Accuracy and
Accuracy Under Attack are reported, which are the classifier accuracy on its own and while
under attack. Further, Attack Success Rate is shown, which is the percentage of successful
perturbation attempts to failed ones. Finally, we report the number of Perturbed Words,
the percentage of words that are perturbed, the Words per Input, the average number of

1Size of training sets: NClean = 25, 000, NR = 2, 500, NP = 2, 439, NN = 3, 138, and NPN = 2, 438.
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MRPCO MRPCL MRPCH MRPCR IMDBO IMDBL IMDBH IMDBR QNLIO QNLIL QNLIH QNLIR

Original Accuracy (%) 82.38 82.23 82.10 82.55 95.40 95.41 95.74 94.26 89.88 89.38 89.38 88.98
Accuracy Under Attack (%) 7.78 13.73 11.94 10.42 9.54 21.43 15.32 12.51 8.21 9.90 7.30 8.67
Attack Success Rate (%) 72.00 70.38 72.64 72.35 59.41 50.59 79.70 56.87 77.54 79.74 82.08 79.27
Perturbed Words (%) 8.47 9.18 9.03 8.91 6.43 8.11 13.09 9.37 7.99 8.32 11.03 8.31
Words per Input 39.3 39.3 39.3 39.3 230.0 230.0 230.0 230.0 37.9 37.9 37.9 37.9
Avg. Number of Queries 56.92 64.37 58.61 58.23 199.32 211.65 201.44 204.12 34.91 33.53 49.09 35.75

Table 5: Perturbation statistics across datasets and models for attacks with DWB using BERT.
Subscripts O, L, H, R denote the original, LM-retrained, human-retrained, and relabeled
models, respectively.

MRPCO MRPCL MRPCH MRPCR IMDBO IMDBL IMDBH IMDBR QNLIO QNLIL QNLIH QNLIR

Original Accuracy (%) 90.84 89.86 90.20 90.61 95.20 94.96 94.67 94.86 90.08 89.58 89.16 89.90
Accuracy Under Attack (%) 13.85 18.31 12.43 14.09 20.97 18.22 15.09 17.55 12.64 15.29 14.53 13.67
Attack Success Rate (%) 68.70 65.24 69.54 66.89 71.32 75.64 78.31 70.55 83.42 79.12 75.87 81.34
Perturbed Words (%) 9.23 8.12 9.68 8.97 6.45 7.54 10.88 8.36 7.34 8.69 9.11 7.92
Words per Input 39.3 39.3 39.3 39.3 230.0 230.0 230.0 230.0 37.9 37.9 37.9 37.9
Avg. Number of Queries 53.92 62.34 57.92 55.76 191.34 192.85 198.21 194.43 48.22 49.98 52.89 50.76

Table 6: Perturbation statistics across datasets and models for attacks with TF using Llama
7B. Subscripts O, L, H, R denote the original, LM-retrained, human-retrained, and relabeled
models, respectively.

MRPCO MRPCL MRPCH MRPCR IMDBO IMDBL IMDBH IMDBR QNLIO QNLIL QNLIH QNLIR

Original Accuracy (%) 90.66 89.73 89.91 90.73 95.33 95.13 94.90 95.10 90.72 90.10 89.73 90.60
Accuracy Under Attack (%) 16.35 14.79 13.87 15.68 21.78 20.32 19.12 22.19 11.78 10.95 14.28 12.44
Attack Success Rate (%) 66.40 63.89 67.56 65.78 70.42 68.55 71.32 74.65 79.78 77.24 82.43 80.34
Perturbed Words (%) 9.11 8.76 9.02 8.86 7.18 6.92 11.54 9.29 8.06 9.11 10.24 8.76
Words per Input 39.3 39.3 39.3 39.3 230.0 230.0 230.0 230.0 37.9 37.9 37.9 37.9
Avg. Number of Queries 60.22 65.14 62.03 61.76 203.56 199.42 204.29 208.23 45.29 43.87 50.77 47.83

Table 7: Perturbation statistics across datasets and models for attacks with DWB using
Llama 7B. Subscripts O, L, H, R denote the original, LM-retrained, human-retrained, and
relabeled models, respectively.

words per input, and the Average Number of Queries, which is how many tries it took the
perturbation method to find the best attack. For BERT, the attack statistics for TF attacks are
shown in table 4 while the ones for DWB attacks are shown in table 5. For Llama 7B, the
attack statistics for TF attacks are shown in table 6 and for DWB in table 7.

To visualize the effect of the retraining across the perturbed samples, we show the confidence
at which predictions are made in figure 4 and figure 5. We observe a reduction in high
confidence misclassifications; specifically, predictions with confidence greater than 90%
are reduced as a result of our method. Additionally, we observe similar results across
perturbation methods, indicating that the performance of our approach is not dependent on
the type of perturbation method employed.
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Example of full workflow for a single UU sample using human computation and
LMs on the IMDB Dataset

Original Sample:
Footage of busy highways, planes flying overhead, poor lightning effects, soldiers
doing their thing, they’re all used in a [[haphazard]] manner, sometimes repeatedly,
and they often only have a loose connection to the story Wood is trying to tell. [...]

Perturbed Sample:
Footage of busy highways, planes flying overhead, poor lightning effects, soldiers
doing their thing, they’re all used in a [[thoughtless]] manner, sometimes repeatedly,
and they often only have a loose connection to the story Wood is trying to tell. [...]

Human Abstraction Hypothesis:
“Haphazard can be intentional, vs thoughtless is unplanned. It feels more of an
unwillingness rather than a lack of ability.”

LM Abstraction Hypothesis:
“The replacement of specific adjectives in the perturbed sample contributes to mis-
classification. The adjective ”thoughtless” in the perturbed sample, may change
the perception of the director’s skills and use of stock footage. This alteration in
sentiment could lead to a different classification outcome.”

Human Extrapolation Hypothesis:
“The hypothesis could be that the words were potentially swapped or replaced, such
as ”bad” being replaced by ”evil” which could lead to an incorrect prediction as it is
similar but could have a slightly different meaning in some contexts.”

LM Extrapolation Hypothesis:
“The use of the word ”hypocrite” may have caused the misclassification. The word
”hypocrite” implies that the person is saying one thing but doing another, which may
be considered a negative trait. However, some people may not interpret the person
in the sample as a hypocrite, leading to a difference in sentiment analysis. This
difference in interpretation may have caused the misclassification by the algorithm.”

Human Abstraction Sample:
“The scenes felt like they were slapped together with no care at all. It’s not that the
director didn’t have the skill they just didn’t bother to try harder. Haphazard is at
least creative but thoughtless just shows they didn’t wanna put the effort in.”

LM Abstraction Sample:
“Skyward Dreams had potential, but the director’s use of stock footage feels thought-
less. Scenes of bustling cities and planes flying overhead are inserted without any
real purpose, disrupting the flow of the narrative. [...]”

Human Extrapolation Sample:
“The CGI in was straight up evil. The way the effects looked completely ruined the
immersion for me, and it felt like the creators didn’t even care about quality. I get
that sometimes budget is an issue, but this was just on another level. [...]”

LM Extrapolation Sample:
“The protagonist of The Final Betrayal is a true hypocrite. Throughout the film, he
preaches loyalty and honesty to his friends, yet secretly manipulates and betrays
them behind their backs. This hypocrisy is central to the film’s conflict, as the
character’s outward morality sharply contrasts with his deceitful actions. Despite
this glaring flaw, some viewers may interpret his behavior as a survival tactic in a
harsh world, rather than outright hypocrisy. [...]”

Figure 2: Example of hypothesis generalization using abstraction for the IMDB dataset. The
abstraction is performed by a human or LM based on original and perturbed samples.
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Figure 4: Plots of successful perturbations for all datasets when using TF, showing the
distribution of the number of instances across confidence bins.
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Figure 5: Plots of successful perturbations for all datasets when using DWB, showing the
distribution of the number of instances across confidence bins.
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