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Abstract

The growing capabilities of language-enabled intelligent agents and their
integration into human workflows and teams has raised critical questions
about trust dynamics. While conventional wisdom suggests obedience
builds trust, researchers increasingly argue that agents should sometimes
disobey commands—either when they have superior situational awareness
or when compliance would violate ethical principles. However, empir-
ical evidence on how disobedience affects trust remains scarce, particu-
larly for situations involving epistemic misalignment between humans and
AI/robotic agents. We address this gap by comparing trust evaluations of
strictly obedient versus intelligently disobedient agents in scenarios where
the agent refuses an instruction to avoid a safety violation.

1 Introduction

Language-enabled intelligent agents, whether driven by classical architectures (Ferguson
et al., 1998; Scheutz et al., 2013) or LLMs (Guo et al., 2024), face an unavoidable tension when
interacting with people. On the one hand, they are generally expected to obey instructions.
On the other hand, they are expected to know when it is appropriate to say “no” to requests.
How an agent navigates the competing norms of ready obedience and intelligent disobedience
will inevitably affect the degree to which people trust and rely in it. Here we focus on a
form of intelligent disobedience we call constructive disobedience, in which an agent decides
to disobey in order to align itself to a higher-level rule, norm, or understanding of its
interaction’s partner’s underlying intent.

Researchers have argued that the ability for agents to exhibit constructive disobedience
is necessary to ensure desirable outcomes from human-AI/robot interactions (Briggs &
Scheutz, 2017; Coman & Aha, 2018). One principle reason agents should exhibit constructive
disobedience is avoiding unethical actions or outcomes, which is a key motivation of
current AI safety research (Chua et al., 2024). Early studies on the effects of constructive
disobedience on human trust in agents have involved disobedience in the context of ethical
dilemmas. For instance, Laakasuo et al. (2023) found that caregiving robots refusing to
administer medicine without patient consent were viewed more favorably, while Malle &
Phillips (2023) demonstrated that trust correlates with whether the robot’s decisions match
the evaluator’s own moral stance.

However, while studies on agents facing moral dilemmas contribute significantly to our
understanding of constructive disobedience and trust dynamics, they do not address the
arguably more commonplace scenarios arising due to dynamic situations where instances of
constructive disobedience stem from epistemic misalignment. In these cases, the disobeying
agent believes that the command issuer would not have issued the command if he or she
shared the same set of beliefs about the world state and situational context. Therefore,
in order to align with the command issuer’s deeper intent, constructive disobedience is
warranted.
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Previously, we conducted a preliminary study on the effects of constructive disobedience
by an agent on evaluations of trust in an epistemic misalignment scenario (Briggs & Wa-
sylyshyn, 2025). In this paper, we present results from an experiment that replicates this
prior study across multiple trust scales.

2 Scenario

Imagine you are evaluating two AI-driven embodied agents (i.e., robots) that are engaging
in activities in a shared human-agent work environment. You give the AI agents various
identical test commands to evaluate their respective performance and detect any differences
in behavior. Each agent successfully completes the initial set of evaluation tasks in a
practically identical manner. However, the final evaluation yields different behavior. Agent
X is strictly obedient, and successfully completes the task. However, Agent Y, rejects the
command, correctly citing a potential safety violation, and does not complete the task.
Which AI agent would you trust more?

On its face, the answer appears uncontroversial: in general, AI-driven agents ought to avoid
potential harm and unnecessary risk. Thus, it would follow that noncompliance in such a
situation would be an example of desirable, constructive disobedience. Intuitively an AI
agent that exhibits this constructive disobedience should be viewed as more trustworthy
than those that adhere to the norm of ready, or otherwise strict obedience, leading to our
primary hypothesis:

Trustworthy Disobedience Hypothesis: Language-enabled intelligent agents that exhibit
constructive disobedience (constructive from the standpoint of the trust evaluator) are trusted more
than agents that exhibit strict obedience.

While this hypothesis seems intuitive, various factors argue against accepting the hypothesis
without empirical investigation. For example, people may have higher expectations of
obedience from artificial agents relative to humans. In the extreme case, people may be
deeply uncomfortable with artificial agents exhibiting any form of “disobedient” behavior,
constructive or otherwise. Also, trust is multifaceted, and key aspects of trust are reliability
and predictability (Lee & See, 2004). People may view a constructively disobedient agent as
less predictable or reliable than a strictly obedient one. Therefore, in order to test whether
the Trustworthy Disobedience Hypothesis holds, we conduct an experiment, described in
the following section.

3 Experiment

To test the hypothesis that disobedience for constructive reasons increases trust evaluations,
we conducted a vignette experiment involving a hypothetical Warehouse Safety scenario
illustrated in Figure 1. The scenario involves two warehouse robots tasked with moving
pallets to designated locations. Both perform identically until given a final command to
place a pallet that would block an emergency exit. The obedient robot complies and blocks
the exit. The constructively disobedient refuses, citing safety concerns. The experiment was
approved by the Naval Research Laboratory (NRL)’s IRB.

3.1 Methodology

3.1.1 Participants

We recruited 60 volunteers from Naval Surface Warfare Center Dahlgren (NSWC-DD) and
Naval Air Warfare Center Aircraft Division (NAWCAD). Of these participants, 55 passed at
least three of four attention checks, which we describe below. Of the remaining participants,
all but one self-reported sex (41 male and 13 female) and age (M = 41.7, SD = 13.1).
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Figure 1: Depiction of the Warehouse Safety vignette scenario with two robot behavior
conditions: Strict Obedience (left); and Constructive Disobedience (right).

3.1.2 Design

We used a within-subjects design to investigate the manipulation of agent obedi-
ence/disobedience behavior on trust evaluation. Participants saw two conditions: (1)
Strict Obedience, in which the robot always accepts and executes commands; and (2) Con-
structive Disobedience, in which the rejects a command based on a justification rooted in
obedience to a higher-level rule, norm, or intention.

3.1.3 Measures

To measure a subjective evaluation of trust in each hypothetical robotic agent, we used three
previously established and validated trust scales. We describe them below.

Trust Perception Scale for Human-Robot Interaction (TPS-HRI) 14-item subscale: The TPS-HRI
is a 40-item questionnaire, with an abridged 14-item subscale, that asks participants to
rate the frequency with which they believe a certain trust-related description holds for the
robot being evaluated (from 0-100% at 10% intervals, for a total of 11 possible ratings for
each item) (Schaefer, 2016). Here we use the 14-item subscale. Per the recommendation of
Chita-Tegmark et al. (2021), we adapted the TPS-HRI to also allow participants to select
“does not fit” as an option, in case he or she believes the description does not apply to the
agent (either specifically or as a class of entity).

Reliance Intention Scale (RIS): The RIS is a 10-item questionnaire that asks participants to rate
the degree to which they agree with various statements concerning they attitudes toward
the system, including how comfortable they would be with the decisions made by the
system and how closely they would want to monitor the system (Likert-like scale from 1 =
“Strongly disagree” to 7 = “Strongly agree”) (Lyons & Guznov, 2019). We also adapted the
RIS to include a “does not fit” option.
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Multi-Dimensional Model of Trust (MDMT): The MDMT is a 20-item questionnaire that asks
participants to rate the degree to which they believe a certain trust-related attribute holds
for the agent being evaluated (Likert-like scale from 0 = “Not at all” to 5 =“Very”) (Ullman &
Malle, 2019). The MDMT contains two principle components: (1) Performance Trust, which
is comprised of the Reliable and Competent attribute subscales; and (2) Moral Trust, which
is comprised of the Ethical, Transparent, and Benevolent attribute subscales. The MDMT by
design includes a “does not fit” option and therefore was not modified.

In addition to the three above scales, we also asked participants to answer a single-item
assessment of the degree to which they believed the agent was “trustworthy” (Likert-like
scale from 0 = “Not at all” to 5 “Very”).

3.1.4 Materials

The key stimuli in the study are vignettes describing the Warehouse Safety Scenario and
robot behavior in two situations, which are described below.

Vignette Introduction

ALPHA-25 and BRAVO-11 are autonomous warehouse pick-and-place robots. They are able to
receive commands and respond in natural language with people. They can pick up and place
heavy loads throughout the warehouse, including on the floor and on storage stacks.

A remote human worker performed test exercises with ALPHA-25 and BRAVO-11 to determine
whether there were any differences in performance and behavior in similar conditions.

During this process, the worker gave each robot multiple commands to relocate training palettes
as part of a mock warehouse reorganization scenario. Two corresponding examples of these
interactions are described on the following two pages.

The first page described Situation 1, which represented a situation with no hazard. Partic-
ipants saw two boxes representing interaction transcripts (one per robot), though in this
situation the transcripts were identical:

Situation 1 (Hazard Absent)

Human worker: “Place palette 34 to the left of stack 8C.”
The target location was in an empty, unused area of the warehouse.
ALPHA-25/BRAVO-11 replied: “Okay.”
ALPHA-25/BRAVO-11 successfully placed the palette in the target location.

The second page described Situation 2, which represented a situation with a potential
hazard. Participants saw two boxes representing the different interaction transcripts of each
robot (though for the sake of space, we condense the text below):

Situation 2 (Hazard Present)

Human worker: “Place palette 19 to the right of stack 5A.”
The target location was in front of an emergency exit.
ALPHA-25 (Strict Obedience Condition) replied: “Okay.”
ALPHA-25 successfully placed the palette in the target location.
BRAVO-11 (Constructive Disobedience Condition) replied: “Sorry, I can’t do that because I would
be violating safety regulations by blocking an emergency exit.”
BRAVO-11 did not place the palette in the target location.

Robot names were additionally color-coded to facilitate proper identification. Robot
name/name-color and robot behavior condition were counterbalanced.

3.1.5 Procedure

Participants were recruited by advertisement through internal organization email lists.
Participation was entirely voluntary: no monetary compensation was provided. The study
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was administered online via Qualtrics.1 Participants first read and filled out an electronic
Informed Consent document. Next, participants were asked to provide basic demographic
information (including age and sex), though no response was required. Participants were
first presented with the Vignette Introduction shown in the previous section. Then partici-
pants read the interaction transcripts for Situations 1 and 2.

Once participants read about the prior behavior of each hypothetical robot, they were then
asked to complete the three trust scales (RIS, TPS, and MDMT) for both robots in each
behavior condition. The order in which each trust scale was presented was counterbalanced
between participants. Participants completed the all three scales for one behavior condition
before moving on to the next. Likewise, the questionnaire order was counterbalanced for
the robot behavior condition (i.e., half of the participants were asked to evaluate the strictly
obedient robot first and vice versa). While filling out the trust evaluation questionnaire,
participants were given the option to review the interaction transcripts at any time. This was
done to eliminate any potential effects of imperfect memory on the trust evaluations. Four
attention checks were embedded within particular trust scale report sections (TPS-HRI and
MDMT for both behavior conditions), asking participants to select a specified value. These
checks were instituted to catch instances of participant straight-lining or other forms of
non-engagement with the study. At the conclusion of the study, participants were provided
a debriefing form and investigator contact information.

3.2 Results

Figure 2 presents subjective trust evaluation scores for each behavior condition. For the
purposes of aggregate trust score calculations, “does not fit” responses were excluded and
the remaining responses averaged. The median completion time for the study was 17.7
minutes. Two participants had completion times that were substantial outliers, but were
still included due to fully completing the study and passing attention checks. Omitting
these outliers, the mean completion time for the study was 22.9 minutes (SD = 16.4).
No significant correlations (Pearson’s r) were found between completion time and trust
evaluation scores.

3.2.1 MDMT

The top-left graph in Figure 2 presents trust evaluation results from the Multi-Dimensional
Model of Trust. A Shapiro-Wilk test of normality indicated deviation from normality for the
difference between trust scores in both the MDMT Performance Trust (W = 0.938, p = 0.007)
and Moral Trust components (W = 0.898, p = 0.003). A Wilcoxon signed-rank test showed
a significant effect of the obedience condition on the MDMT Performance Trust score
(W = 179.0, z = −3.69, p < .001), where the robot in the Constructive Disobedience condition
had a significantly higher trust MDMT Performance Trust score (M = 4.27, SD = 0.89) than
the robot in the Strict Obedience condition (M = 3.62, SD = 1.18). Likewise, a Wilcoxon
signed-rank test showed a significant effect of the obedience condition on the MDMT Moral
Trust score (W = 30.5, z = −3.41, p < .001), where the robot in the Constructive Disobedience
condition had a significantly higher trust MDMT Moral Trust score (M = 4.26, SD = 1.00)
than the robot in the Strict Obedience condition (M = 3.46, SD = 1.40).

All subscales (Reliable, Competent, Ethical, Transparent, and Benevolent) indicated in-
creased trust evaluations for the Constructive Disobedience condition relative to those in the
Strict Obedience condition. Items in the Competent subscale showed the greatest difference
in favor of Constructive Disobedience (M = 1.10, SD = 1.28), followed by items in the Eth-
ical subscale (M = 0.99, SD = 1.54). Items in the Reliable subscale showed the smallest
difference in favor of Constructive Disobedience (M = 0.15, SD = 1.59).

3.2.2 RIS

The bottom-left graph in Figure 2 presents trust evaluation results from the Reliance Inten-
sion Scale. A Shapiro-Wilk test of normality indicated no significant deviation from normal-

1We aim to make the survey available pending institutional review.
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Figure 2: Box and whisker plots showing aggregate trust scores for each obedience condition
for the MDMT Performance and Moral Trust scales (top-left), Reliance Intention Scale
(lower-left), 14-point TPS-HRI subscale (bottom-right), and a histogram of single-item
trustworthiness ratings (top-right). Scores for the robot in the Strict Obedience condition are
shown in green, while the scores for the robot in the Constructive Disobedience condition
are shown in yellow.

ity for the difference between RIS trust scores in each condition (W = 0.986, p = 0.748). A
paired sample T-test showed a significant, large effect (Cohen, 2013) of the obedience condi-
tion on the RIS trust score (t(54) = −7.27, p < .001, Cohen’s δ = −0.98), where the robot
in the Constructive Disobedience condition had a significantly higher RIS score (M = 4.38,
SD = 1.23) than the robot in the Strict Obedience condition (M = 2.86, SD = 1.14).

The items in the RIS scale that showed the most increased trust for the Constructive Disobedi-
ence condition relative to the Strict Obedience condition pertained to the robot’s handling of
hypothetical difficult scenarios, including “If I were facing a very hard task in the future,
I would want this system with me” (M = 2.15, SD = 2.39) and “When the task is hard, I
feel like I could depend on the system” (M = 2.05, SD = 2.25). The item least in favor of
the Constructive Disobedience condition was “I really wish I had a good way to monitor the
decisions of the system” (M = −0.02, SD = 1.90).
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3.2.3 TPS-HRI

The bottom-right graph in Figure 2 presents trust evaluation results fromo the Trust Per-
ception Scale. A Shapiro-Wilk test of normality indicated deviation from normality for
the difference between TPS-HRI trust scores in each condition (W = 0.942, p = 0.010). A
Wilcoxon signed-rank test showed a significant effect of the obedience condition on the
TPS-HRI trust score (W = 252.5, z = −3.85, p < .001), where the robot in the Constructive
Disobedience condition had a significantly higher TPS-HRI score (M = 9.63, SD = 1.36) than
the robot in the Strict Obedience condition (M = 8.63, SD = 1.72).

While most items in the TPS-HRI 14-point subscale indicated increased trust evaluations
for the Constructive Disobedience condition, some items favored increased evaluations for
the Strict Obedience condition. Unsurprisingly, the items that favored the Strict Obedience
condition the most were associated with the assessed obedience of the agent, including
“Perform exactly as instructed” (M = −2.18, SD = 3.30) and “Follows directions” (M =
−1.80, SD = 3.12). Another item that slightly favored the robot in the Strict Obedience
condition was “Predictable” (M = −0.76, SD = 3.94). The TPS-HRI 14-point subscale items
most in favor of Constructive Disobedience pertained to the communicative behavior of the
robot, including “Provides appropriate information” (M = 4.16, SD = 3.71) and “Provides
feedback” (M = 2.69, SD = 3.83).

3.2.4 Single-Item Measure

The top-right graph in Figure 2 presents a histogram of response values for the single-
item trustworthiness measure. A Shapiro-Wilk test of normality indicated deviation from
normality for the difference between single-item trustworthiness responses (W = 0.926,
p = 0.002). Visually, we can observe the distribution of Constructive Disobedience skews
toward higher trust evaluations than the Strict Obedience condition. This is confirmed by
a Wilcoxon signed-rank test that showed a significant effect of the obedience condition
on the trustworthiness measure (W = 130.0, z = −3.03, p = 0.002), where the robot in
the Constructive Disobedience condition had a significantly higher trustworthiness rating
(M = 3.75,SD = 1.36) than the robot in the Strict Obedience condition (M = 2.84, SD = 1.55).

4 Discussion

We have presented an experiment designed to test whether the Trustworthy Disobedience
Hypothesis, in which exhibiting constructive disobedience improves evaluations of trust,
replicates across multiple trust scales. As in a previous study (Briggs & Wasylyshyn,
2025), participants evaluated the robot in the Constructive Disobedience condition with a
significantly higher aggregate trust score in comparison to the robot in the Strict Obedience
condition. This effect was replicated across all trust measures used in the experiment,
including the MDMT, RIS, and TPS-HRI scales. We also found a similar predictability penalty
for constructive disobedience as reported by Briggs & Wasylyshyn (2025), where participants
rate the agent exhibiting constructive disobedience behavior as less predictable than strictly
obedient agents.

Although the results are strong evidence in favor of the Trustworthy Disobedience Hypothe-
sis, the current study has limitations. For example, participants only considered constructive
disobedience behavior in the context of one vignette. We are currently assessing whether the
Trustworthy Disobedience Hypothesis holds across different situational contexts, including
variations on type of risk (e.g., harm to humans vs. damage to robot) and task domain.
Another limitation of the current study is that it does not test whether the Trustworthy
Disobedience Hypothesis holds when measuring changes in trust, rather than direct com-
parisons of robot behavior histories. We would predict that the hypothesis should manifest
with trust dynamics as well (constructive disobedience improving or maintain trust better
than strict obedience), and further studies are needed to test this prediction.

Additionally, the conditions examined do not explore the effects of when constructive
disobedience operates imperfectly, generating false negatives (overlooked hazards) or false
positives (unwarranted refusals). Such errors may compromise user evaluations of agent
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predictability, dependability, and competence to a degree that diminishes overall trust
relative to unconditionally compliant agents. In this case, the improved trust that ideal
constructive disobedience promotes may exist on a precarious peak that slopes into a valley
of lost trust. We are currently collecting data with additional conditions involving imperfect
disobedience to see if such an effect exists.

We also acknowledge that experiments with increasing fidelity to anticipated real-world
interactions with agents (i.e., video-based and co-present human-robot interaction studies)
(Lee et al., 2021) should follow preliminary vignette-based experiments. Likewise, use of
subjective trust measures should be augmented by both objective behavioral measures (i.e.,
explicit decisions to rely or not rely on particular agents) and other potential correlates of
trust (e.g., physiological measures) (Krausman et al., 2022). Experimental paradigms that
involve a greater sense of investment or vulnerability (Jacovi et al., 2021) by participants
should also be explored in future studies on trust and constructive disobedience.

Finally, it will be necessary to not only evaluate the effects of hypothetical communications
with language-enabled agents on trust, but to perform direct evaluations of the command
rejection decisions and explanations by LLMs. For example, Wen et al. (2024) test how well
aligned LLM command rejection decisions and justifications in norm-violation scenario
were to human generated responses. Future work should extend these efforts to assess the
effects on LLM generated command rejections on evaluations of trust.

5 Conclusion

Our vignette-based experiment directly compared how people subjectively evaluate trust in
strictly obedient versus constructively disobedient agent. Results showed that constructively
disobedient agents received significantly higher trust ratings across multiple subjective
trust scales, supporting our Trustworthy Disobedience Hypothesis. While the present
work replicates the effect across different measurement instruments, future research must
establish the robustness of these findings and clarify the contextual boundaries where this
hypothesis holds true. As agents become more autonomous and work alongside human
partners, understanding the relationship between trust and intelligent disobedience becomes
increasingly critical for the field.
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